Files
fzf/src/pattern.go
Junegunn Choi 2f6d23b91e Enhanced ranking algorithm
Based on the patch by Matt Westcott (@mjwestcott).
But with a more conservative approach:
- Does not use linearly increasing penalties; It is agreed upon that we
  should prefer matching characters at the beginnings of the words, but
  it's not always clear that the relevance is inversely proportional to
  the distance from the beginning.
- The approach here is more conservative in that the bonus is never
  large enough to override the matchlen, so it can be thought of as the
  first implicit tiebreak criterion.
- One may argue the change breaks the contract of --tiebreak, but the
  judgement depends on the definition of "tie".
2016-04-16 14:33:38 +09:00

383 lines
8.6 KiB
Go

package fzf
import (
"regexp"
"sort"
"strings"
"github.com/junegunn/fzf/src/algo"
"github.com/junegunn/fzf/src/util"
)
// fuzzy
// 'exact
// ^exact-prefix
// exact-suffix$
// !not-fuzzy
// !'not-exact
// !^not-exact-prefix
// !not-exact-suffix$
type termType int
const (
termFuzzy termType = iota
termExact
termPrefix
termSuffix
termEqual
)
type term struct {
typ termType
inv bool
text []rune
caseSensitive bool
origText []rune
}
type termSet []term
// Pattern represents search pattern
type Pattern struct {
fuzzy bool
extended bool
caseSensitive bool
forward bool
text []rune
termSets []termSet
cacheable bool
delimiter Delimiter
nth []Range
procFun map[termType]func(bool, bool, []rune, []rune) algo.Result
}
var (
_patternCache map[string]*Pattern
_splitRegex *regexp.Regexp
_cache ChunkCache
)
func init() {
_splitRegex = regexp.MustCompile("\\s+")
clearPatternCache()
clearChunkCache()
}
func clearPatternCache() {
// We can uniquely identify the pattern for a given string since
// search mode and caseMode do not change while the program is running
_patternCache = make(map[string]*Pattern)
}
func clearChunkCache() {
_cache = NewChunkCache()
}
// BuildPattern builds Pattern object from the given arguments
func BuildPattern(fuzzy bool, extended bool, caseMode Case, forward bool,
nth []Range, delimiter Delimiter, runes []rune) *Pattern {
var asString string
if extended {
asString = strings.Trim(string(runes), " ")
} else {
asString = string(runes)
}
cached, found := _patternCache[asString]
if found {
return cached
}
caseSensitive, cacheable := true, true
termSets := []termSet{}
if extended {
termSets = parseTerms(fuzzy, caseMode, asString)
Loop:
for _, termSet := range termSets {
for idx, term := range termSet {
// If the query contains inverse search terms or OR operators,
// we cannot cache the search scope
if idx > 0 || term.inv {
cacheable = false
break Loop
}
}
}
} else {
lowerString := strings.ToLower(asString)
caseSensitive = caseMode == CaseRespect ||
caseMode == CaseSmart && lowerString != asString
if !caseSensitive {
asString = lowerString
}
}
ptr := &Pattern{
fuzzy: fuzzy,
extended: extended,
caseSensitive: caseSensitive,
forward: forward,
text: []rune(asString),
termSets: termSets,
cacheable: cacheable,
nth: nth,
delimiter: delimiter,
procFun: make(map[termType]func(bool, bool, []rune, []rune) algo.Result)}
ptr.procFun[termFuzzy] = algo.FuzzyMatch
ptr.procFun[termEqual] = algo.EqualMatch
ptr.procFun[termExact] = algo.ExactMatchNaive
ptr.procFun[termPrefix] = algo.PrefixMatch
ptr.procFun[termSuffix] = algo.SuffixMatch
_patternCache[asString] = ptr
return ptr
}
func parseTerms(fuzzy bool, caseMode Case, str string) []termSet {
tokens := _splitRegex.Split(str, -1)
sets := []termSet{}
set := termSet{}
switchSet := false
for _, token := range tokens {
typ, inv, text := termFuzzy, false, token
lowerText := strings.ToLower(text)
caseSensitive := caseMode == CaseRespect ||
caseMode == CaseSmart && text != lowerText
if !caseSensitive {
text = lowerText
}
origText := []rune(text)
if !fuzzy {
typ = termExact
}
if text == "|" {
switchSet = false
continue
}
if strings.HasPrefix(text, "!") {
inv = true
text = text[1:]
}
if strings.HasPrefix(text, "'") {
// Flip exactness
if fuzzy {
typ = termExact
text = text[1:]
} else {
typ = termFuzzy
text = text[1:]
}
} else if strings.HasPrefix(text, "^") {
if strings.HasSuffix(text, "$") {
typ = termEqual
text = text[1 : len(text)-1]
} else {
typ = termPrefix
text = text[1:]
}
} else if strings.HasSuffix(text, "$") {
typ = termSuffix
text = text[:len(text)-1]
}
if len(text) > 0 {
if switchSet {
sets = append(sets, set)
set = termSet{}
}
set = append(set, term{
typ: typ,
inv: inv,
text: []rune(text),
caseSensitive: caseSensitive,
origText: origText})
switchSet = true
}
}
if len(set) > 0 {
sets = append(sets, set)
}
return sets
}
// IsEmpty returns true if the pattern is effectively empty
func (p *Pattern) IsEmpty() bool {
if !p.extended {
return len(p.text) == 0
}
return len(p.termSets) == 0
}
// AsString returns the search query in string type
func (p *Pattern) AsString() string {
return string(p.text)
}
// CacheKey is used to build string to be used as the key of result cache
func (p *Pattern) CacheKey() string {
if !p.extended {
return p.AsString()
}
cacheableTerms := []string{}
for _, termSet := range p.termSets {
if len(termSet) == 1 && !termSet[0].inv {
cacheableTerms = append(cacheableTerms, string(termSet[0].origText))
}
}
return strings.Join(cacheableTerms, " ")
}
// Match returns the list of matches Items in the given Chunk
func (p *Pattern) Match(chunk *Chunk) []*Item {
space := chunk
// ChunkCache: Exact match
cacheKey := p.CacheKey()
if p.cacheable {
if cached, found := _cache.Find(chunk, cacheKey); found {
return cached
}
}
// ChunkCache: Prefix/suffix match
Loop:
for idx := 1; idx < len(cacheKey); idx++ {
// [---------| ] | [ |---------]
// [--------| ] | [ |--------]
// [-------| ] | [ |-------]
prefix := cacheKey[:len(cacheKey)-idx]
suffix := cacheKey[idx:]
for _, substr := range [2]*string{&prefix, &suffix} {
if cached, found := _cache.Find(chunk, *substr); found {
cachedChunk := Chunk(cached)
space = &cachedChunk
break Loop
}
}
}
matches := p.matchChunk(space)
if p.cacheable {
_cache.Add(chunk, cacheKey, matches)
}
return matches
}
func (p *Pattern) matchChunk(chunk *Chunk) []*Item {
matches := []*Item{}
if !p.extended {
for _, item := range *chunk {
offset, bonus := p.basicMatch(item)
if sidx := offset[0]; sidx >= 0 {
matches = append(matches,
dupItem(item, []Offset{offset}, bonus))
}
}
} else {
for _, item := range *chunk {
if offsets, bonus := p.extendedMatch(item); len(offsets) == len(p.termSets) {
matches = append(matches, dupItem(item, offsets, bonus))
}
}
}
return matches
}
// MatchItem returns true if the Item is a match
func (p *Pattern) MatchItem(item *Item) bool {
if !p.extended {
offset, _ := p.basicMatch(item)
sidx := offset[0]
return sidx >= 0
}
offsets, _ := p.extendedMatch(item)
return len(offsets) == len(p.termSets)
}
func dupItem(item *Item, offsets []Offset, bonus int32) *Item {
sort.Sort(ByOrder(offsets))
return &Item{
text: item.text,
origText: item.origText,
transformed: item.transformed,
offsets: offsets,
bonus: bonus,
colors: item.colors,
rank: buildEmptyRank(item.Index())}
}
func (p *Pattern) basicMatch(item *Item) (Offset, int32) {
input := p.prepareInput(item)
if p.fuzzy {
return p.iter(algo.FuzzyMatch, input, p.caseSensitive, p.forward, p.text)
}
return p.iter(algo.ExactMatchNaive, input, p.caseSensitive, p.forward, p.text)
}
func (p *Pattern) extendedMatch(item *Item) ([]Offset, int32) {
input := p.prepareInput(item)
offsets := []Offset{}
var totalBonus int32
for _, termSet := range p.termSets {
var offset *Offset
var bonus int32
for _, term := range termSet {
pfun := p.procFun[term.typ]
off, pen := p.iter(pfun, input, term.caseSensitive, p.forward, term.text)
if sidx := off[0]; sidx >= 0 {
if term.inv {
continue
}
offset, bonus = &off, pen
break
} else if term.inv {
offset, bonus = &Offset{0, 0, 0}, 0
continue
}
}
if offset != nil {
offsets = append(offsets, *offset)
totalBonus += bonus
}
}
return offsets, totalBonus
}
func (p *Pattern) prepareInput(item *Item) []Token {
if item.transformed != nil {
return item.transformed
}
var ret []Token
if len(p.nth) > 0 {
tokens := Tokenize(item.text, p.delimiter)
ret = Transform(tokens, p.nth)
} else {
ret = []Token{Token{text: item.text, prefixLength: 0, trimLength: util.TrimLen(item.text)}}
}
item.transformed = ret
return ret
}
func (p *Pattern) iter(pfun func(bool, bool, []rune, []rune) algo.Result,
tokens []Token, caseSensitive bool, forward bool, pattern []rune) (Offset, int32) {
for _, part := range tokens {
prefixLength := int32(part.prefixLength)
if res := pfun(caseSensitive, forward, part.text, pattern); res.Start >= 0 {
var sidx int32 = res.Start + prefixLength
var eidx int32 = res.End + prefixLength
return Offset{sidx, eidx, int32(part.trimLength)}, res.Bonus
}
}
// TODO: math.MaxUint16
return Offset{-1, -1, -1}, 0.0
}