mirror of
https://github.com/PaperMC/Paper.git
synced 2025-08-13 11:15:57 -07:00
Introduce rotation methods to the Vector class
By: Bjarne Koll <LynxPlay101@gmail.com>
This commit is contained in:
@@ -1,5 +1,6 @@
|
||||
package org.bukkit.util;
|
||||
|
||||
import com.google.common.base.Preconditions;
|
||||
import java.util.LinkedHashMap;
|
||||
import java.util.Map;
|
||||
import java.util.Random;
|
||||
@@ -373,6 +374,148 @@ public class Vector implements Cloneable, ConfigurationSerializable {
|
||||
return (NumberConversions.square(origin.x - x) + NumberConversions.square(origin.y - y) + NumberConversions.square(origin.z - z)) <= NumberConversions.square(radius);
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns if a vector is normalized
|
||||
*
|
||||
* @return whether the vector is normalised
|
||||
*/
|
||||
public boolean isNormalized() {
|
||||
return Math.abs(this.lengthSquared() - 1) < getEpsilon();
|
||||
}
|
||||
|
||||
/**
|
||||
* Rotates the vector around the x axis.
|
||||
* <p>
|
||||
* This piece of math is based on the standard rotation matrix for vectors
|
||||
* in three dimensional space. This matrix can be found here:
|
||||
* <a href="https://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations">Rotation
|
||||
* Matrix</a>.
|
||||
*
|
||||
* @param angle the angle to rotate the vector about. This angle is passed
|
||||
* in radians
|
||||
* @return the same vector
|
||||
*/
|
||||
public Vector rotateAroundX(double angle) {
|
||||
double angleCos = Math.cos(angle);
|
||||
double angleSin = Math.sin(angle);
|
||||
|
||||
double y = angleCos * getY() - angleSin * getZ();
|
||||
double z = angleSin * getY() + angleCos * getZ();
|
||||
return setY(y).setZ(z);
|
||||
}
|
||||
|
||||
/**
|
||||
* Rotates the vector around the y axis.
|
||||
* <p>
|
||||
* This piece of math is based on the standard rotation matrix for vectors
|
||||
* in three dimensional space. This matrix can be found here:
|
||||
* <a href="https://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations">Rotation
|
||||
* Matrix</a>.
|
||||
*
|
||||
* @param angle the angle to rotate the vector about. This angle is passed
|
||||
* in radians
|
||||
* @return the same vector
|
||||
*/
|
||||
public Vector rotateAroundY(double angle) {
|
||||
double angleCos = Math.cos(angle);
|
||||
double angleSin = Math.sin(angle);
|
||||
|
||||
double x = angleCos * getX() + angleSin * getZ();
|
||||
double z = -angleSin * getX() + angleCos * getZ();
|
||||
return setX(x).setZ(z);
|
||||
}
|
||||
|
||||
/**
|
||||
* Rotates the vector around the z axis
|
||||
* <p>
|
||||
* This piece of math is based on the standard rotation matrix for vectors
|
||||
* in three dimensional space. This matrix can be found here:
|
||||
* <a href="https://en.wikipedia.org/wiki/Rotation_matrix#Basic_rotations">Rotation
|
||||
* Matrix</a>.
|
||||
*
|
||||
* @param angle the angle to rotate the vector about. This angle is passed
|
||||
* in radians
|
||||
* @return the same vector
|
||||
*/
|
||||
public Vector rotateAroundZ(double angle) {
|
||||
double angleCos = Math.cos(angle);
|
||||
double angleSin = Math.sin(angle);
|
||||
|
||||
double x = angleCos * getX() - angleSin * getY();
|
||||
double y = angleSin * getX() + angleCos * getY();
|
||||
return setX(x).setY(y);
|
||||
}
|
||||
|
||||
/**
|
||||
* Rotates the vector around a given arbitrary axis in 3 dimensional space.
|
||||
*
|
||||
* <p>
|
||||
* Rotation will follow the general Right-Hand-Rule, which means rotation
|
||||
* will be counterclockwise when the axis is pointing towards the observer.
|
||||
* <p>
|
||||
* This method will always make sure the provided axis is a unit vector, to
|
||||
* not modify the length of the vector when rotating. If you are experienced
|
||||
* with the scaling of a non-unit axis vector, you can use
|
||||
* {@link Vector#rotateAroundNonUnitAxis(Vector, double)}.
|
||||
*
|
||||
* @param axis the axis to rotate the vector around. If the passed vector is
|
||||
* not of length 1, it gets copied and normalized before using it for the
|
||||
* rotation. Please use {@link Vector#normalize()} on the instance before
|
||||
* passing it to this method
|
||||
* @param angle the angle to rotate the vector around the axis
|
||||
* @return the same vector
|
||||
* @throws IllegalArgumentException if the provided axis vector instance is
|
||||
* null
|
||||
*/
|
||||
public Vector rotateAroundAxis(Vector axis, double angle) throws IllegalArgumentException {
|
||||
Preconditions.checkArgument(axis != null, "The provided axis vector was null");
|
||||
|
||||
return rotateAroundNonUnitAxis(axis.isNormalized() ? axis : axis.clone().normalize(), angle);
|
||||
}
|
||||
|
||||
/**
|
||||
* Rotates the vector around a given arbitrary axis in 3 dimensional space.
|
||||
*
|
||||
* <p>
|
||||
* Rotation will follow the general Right-Hand-Rule, which means rotation
|
||||
* will be counterclockwise when the axis is pointing towards the observer.
|
||||
* <p>
|
||||
* Note that the vector length will change accordingly to the axis vector
|
||||
* length. If the provided axis is not a unit vector, the rotated vector
|
||||
* will not have its previous length. The scaled length of the resulting
|
||||
* vector will be related to the axis vector. If you are not perfectly sure
|
||||
* about the scaling of the vector, use
|
||||
* {@link Vector#rotateAroundAxis(Vector, double)}
|
||||
*
|
||||
* @param axis the axis to rotate the vector around.
|
||||
* @param angle the angle to rotate the vector around the axis
|
||||
* @return the same vector
|
||||
* @throws IllegalArgumentException if the provided axis vector instance is
|
||||
* null
|
||||
*/
|
||||
public Vector rotateAroundNonUnitAxis(Vector axis, double angle) throws IllegalArgumentException {
|
||||
Preconditions.checkArgument(axis != null, "The provided axis vector was null");
|
||||
|
||||
double x = getX(), y = getY(), z = getZ();
|
||||
double x2 = axis.getX(), y2 = axis.getY(), z2 = axis.getZ();
|
||||
|
||||
double cosTheta = Math.cos(angle);
|
||||
double sinTheta = Math.sin(angle);
|
||||
double dotProduct = this.dot(axis);
|
||||
|
||||
double xPrime = x2 * dotProduct * (1d - cosTheta)
|
||||
+ x * cosTheta
|
||||
+ (-z2 * y + y2 * z) * sinTheta;
|
||||
double yPrime = y2 * dotProduct * (1d - cosTheta)
|
||||
+ y * cosTheta
|
||||
+ (z2 * x - x2 * z) * sinTheta;
|
||||
double zPrime = z2 * dotProduct * (1d - cosTheta)
|
||||
+ z * cosTheta
|
||||
+ (-y2 * x + x2 * y) * sinTheta;
|
||||
|
||||
return setX(xPrime).setY(yPrime).setZ(zPrime);
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the X component.
|
||||
*
|
||||
|
Reference in New Issue
Block a user