Files
paper-mc/paper-api/src/main/java/org/bukkit/Location.java

1257 lines
42 KiB
Java

package org.bukkit;
import com.google.common.base.Preconditions;
import java.lang.ref.Reference;
import java.lang.ref.WeakReference;
import java.util.Collection;
import java.util.HashMap;
import java.util.Map;
import java.util.function.Predicate;
import io.papermc.paper.math.FinePosition;
import io.papermc.paper.math.Rotation;
import org.bukkit.block.Block;
import org.bukkit.configuration.serialization.ConfigurationSerializable;
import org.bukkit.entity.Entity;
import org.bukkit.entity.LivingEntity;
import org.bukkit.entity.Player;
import org.bukkit.util.NumberConversions;
import org.bukkit.util.Vector;
import org.jetbrains.annotations.Contract;
import org.jetbrains.annotations.NotNull;
import org.jetbrains.annotations.Nullable;
/**
* Represents a 3-dimensional position in a world.
* <br>
* No constraints are placed on any angular values other than that they be
* specified in degrees. This means that negative angles or angles of greater
* magnitude than 360 are valid, but may be normalized to any other equivalent
* representation by the implementation.
*/
public class Location implements Cloneable, ConfigurationSerializable, io.papermc.paper.math.FinePosition {
private Reference<World> world;
private double x;
private double y;
private double z;
private float pitch;
private float yaw;
/**
* Constructs a new Location with the given coordinates
*
* @param world The world in which this location resides
* @param x The x-coordinate of this new location
* @param y The y-coordinate of this new location
* @param z The z-coordinate of this new location
*/
public Location(@UndefinedNullability final World world, final double x, final double y, final double z) {
this(world, x, y, z, 0, 0);
}
/**
* Constructs a new Location with the given coordinates and direction
*
* @param world The world in which this location resides
* @param x The x-coordinate of this new location
* @param y The y-coordinate of this new location
* @param z The z-coordinate of this new location
* @param yaw The absolute rotation on the x-plane, in degrees
* @param pitch The absolute rotation on the y-plane, in degrees
*/
public Location(@UndefinedNullability final World world, final double x, final double y, final double z, final float yaw, final float pitch) {
if (world != null) {
this.world = new WeakReference<>(world);
}
this.x = x;
this.y = y;
this.z = z;
this.pitch = pitch;
this.yaw = yaw;
}
/**
* Sets the world that this location resides in
*
* @param world New world that this location resides in
*/
public void setWorld(@Nullable World world) {
this.world = (world == null) ? null : new WeakReference<>(world);
}
/**
* Checks if world in this location is present and loaded.
*
* @return true if is loaded, otherwise false
*/
public boolean isWorldLoaded() {
if (this.world == null) {
return false;
}
World world = this.world.get();
return world != null && world.equals(Bukkit.getWorld(world.getUID()));
}
/**
* Gets the world that this location resides in
*
* @return World that contains this location, or {@code null} if it is not set
* @throws IllegalArgumentException when world is unloaded
* @see #isWorldLoaded()
*/
@UndefinedNullability
public World getWorld() {
if (this.world == null) {
return null;
}
World world = this.world.get();
Preconditions.checkArgument(world != null, "World unloaded");
return world;
}
/**
* Gets the chunk at the represented location
*
* @return Chunk at the represented location
*/
@NotNull
public Chunk getChunk() {
return getWorld().getChunkAt(this);
}
/**
* Gets the block at the represented location
*
* @return Block at the represented location
*/
@NotNull
public Block getBlock() {
return getWorld().getBlockAt(this);
}
/**
* Sets the x-coordinate of this location
*
* @param x X-coordinate
*/
public void setX(double x) {
this.x = x;
}
/**
* Gets the x-coordinate of this location
*
* @return x-coordinate
*/
public double getX() {
return x;
}
/**
* Gets the floored value of the X component, indicating the block that
* this location is contained with.
*
* @return block X
*/
public int getBlockX() {
return locToBlock(x);
}
/**
* Sets the y-coordinate of this location
*
* @param y y-coordinate
*/
public void setY(double y) {
this.y = y;
}
/**
* Gets the y-coordinate of this location
*
* @return y-coordinate
*/
public double getY() {
return y;
}
/**
* Gets the floored value of the Y component, indicating the block that
* this location is contained with.
*
* @return block y
*/
public int getBlockY() {
return locToBlock(y);
}
/**
* Sets the z-coordinate of this location
*
* @param z z-coordinate
*/
public void setZ(double z) {
this.z = z;
}
/**
* Gets the z-coordinate of this location
*
* @return z-coordinate
*/
public double getZ() {
return z;
}
/**
* Gets the floored value of the Z component, indicating the block that
* this location is contained with.
*
* @return block z
*/
public int getBlockZ() {
return locToBlock(z);
}
/**
* Sets the yaw of this location, measured in degrees.
* <ul>
* <li>A yaw of 0 or 360 represents the positive z direction.
* <li>A yaw of 180 represents the negative z direction.
* <li>A yaw of 90 represents the negative x direction.
* <li>A yaw of 270 represents the positive x direction.
* </ul>
* Increasing yaw values are the equivalent of turning to your
* right-facing, increasing the scale of the next respective axis, and
* decreasing the scale of the previous axis.
*
* @param yaw new rotation's yaw
*/
public void setYaw(float yaw) {
this.yaw = yaw;
}
/**
* Gets the yaw of this location, measured in degrees.
* <ul>
* <li>A yaw of 0 or 360 represents the positive z direction.
* <li>A yaw of 180 represents the negative z direction.
* <li>A yaw of 90 represents the negative x direction.
* <li>A yaw of 270 represents the positive x direction.
* </ul>
* Increasing yaw values are the equivalent of turning to your
* right-facing, increasing the scale of the next respective axis, and
* decreasing the scale of the previous axis.
*
* @return the rotation's yaw
*/
public float getYaw() {
return yaw;
}
/**
* Sets the pitch of this location, measured in degrees.
* <ul>
* <li>A pitch of 0 represents level forward facing.
* <li>A pitch of 90 represents downward facing, or negative y
* direction.
* <li>A pitch of -90 represents upward facing, or positive y direction.
* </ul>
* Increasing pitch values the equivalent of looking down.
*
* @param pitch new incline's pitch
*/
public void setPitch(float pitch) {
this.pitch = pitch;
}
/**
* Gets the pitch of this location, measured in degrees.
* <ul>
* <li>A pitch of 0 represents level forward facing.
* <li>A pitch of 90 represents downward facing, or negative y
* direction.
* <li>A pitch of -90 represents upward facing, or positive y direction.
* </ul>
* Increasing pitch values the equivalent of looking down.
*
* @return the incline's pitch
*/
public float getPitch() {
return pitch;
}
/**
* Gets a unit-vector pointing in the direction that this Location is
* facing.
*
* @return a vector pointing the direction of this location's {@link
* #getPitch() pitch} and {@link #getYaw() yaw}
*/
@NotNull
public Vector getDirection() {
Vector vector = new Vector();
double rotX = this.getYaw();
double rotY = this.getPitch();
vector.setY(-Math.sin(Math.toRadians(rotY)));
double xz = Math.cos(Math.toRadians(rotY));
vector.setX(-xz * Math.sin(Math.toRadians(rotX)));
vector.setZ(xz * Math.cos(Math.toRadians(rotX)));
return vector;
}
/**
* Sets the {@link #getYaw() yaw} and {@link #getPitch() pitch} to point
* in the direction of the vector.
*
* @param vector the direction vector
* @return the same location
*/
@NotNull
public Location setDirection(@NotNull Vector vector) {
/*
* Sin = Opp / Hyp
* Cos = Adj / Hyp
* Tan = Opp / Adj
*
* x = -Opp
* z = Adj
*/
final double _2PI = 2 * Math.PI;
final double x = vector.getX();
final double z = vector.getZ();
if (x == 0 && z == 0) {
pitch = vector.getY() > 0 ? -90 : 90;
return this;
}
double theta = Math.atan2(-x, z);
yaw = (float) Math.toDegrees((theta + _2PI) % _2PI);
double x2 = NumberConversions.square(x);
double z2 = NumberConversions.square(z);
double xz = Math.sqrt(x2 + z2);
pitch = (float) Math.toDegrees(Math.atan(-vector.getY() / xz));
return this;
}
/**
* Adds the location by another.
*
* @param vec The other location
* @return the same location
* @throws IllegalArgumentException for differing worlds
* @see Vector
*/
@NotNull
public Location add(@NotNull Location vec) {
if (vec == null || vec.getWorld() != getWorld()) {
throw new IllegalArgumentException("Cannot add Locations of differing worlds");
}
x += vec.x;
y += vec.y;
z += vec.z;
return this;
}
/**
* Adds the location by a vector.
*
* @param vec Vector to use
* @return the same location
* @see Vector
*/
@NotNull
public Location add(@NotNull Vector vec) {
this.x += vec.getX();
this.y += vec.getY();
this.z += vec.getZ();
return this;
}
/**
* Adds the location by another. Not world-aware.
*
* @param x X coordinate
* @param y Y coordinate
* @param z Z coordinate
* @return the same location
* @see Vector
*/
@NotNull
public Location add(double x, double y, double z) {
this.x += x;
this.y += y;
this.z += z;
return this;
}
/**
* Adds rotation in the form of yaw and patch to this location. Not world-aware.
*
* @param yaw yaw, measured in degrees.
* @param pitch pitch, measured in degrees.
* @return the same location
* @see Vector
*/
@NotNull
@Contract(value = "_,_ -> this", mutates = "this")
public Location addRotation(final float yaw, final float pitch) {
this.yaw += yaw;
this.pitch += pitch;
return this;
}
/**
* Adds rotation to this location. Not world-aware.
*
* @param rotation the rotation to add.
* @return the same location
* @see Vector
*/
@NotNull
@Contract(value = "_ -> this", mutates = "this")
public Location addRotation(@NotNull Rotation rotation) {
return addRotation(rotation.yaw(), rotation.pitch());
}
/**
* Subtracts the location by another.
*
* @param vec The other location
* @return the same location
* @throws IllegalArgumentException for differing worlds
* @see Vector
*/
@NotNull
public Location subtract(@NotNull Location vec) {
if (vec == null || vec.getWorld() != getWorld()) {
throw new IllegalArgumentException("Cannot add Locations of differing worlds");
}
x -= vec.x;
y -= vec.y;
z -= vec.z;
return this;
}
/**
* Subtracts the location by a vector.
*
* @param vec The vector to use
* @return the same location
* @see Vector
*/
@NotNull
public Location subtract(@NotNull Vector vec) {
this.x -= vec.getX();
this.y -= vec.getY();
this.z -= vec.getZ();
return this;
}
/**
* Subtracts the location by another. Not world-aware and
* orientation independent.
*
* @param x X coordinate
* @param y Y coordinate
* @param z Z coordinate
* @return the same location
* @see Vector
*/
@NotNull
public Location subtract(double x, double y, double z) {
this.x -= x;
this.y -= y;
this.z -= z;
return this;
}
/**
* Subtracts rotation in the form of yaw and patch from this location.
*
* @param yaw yaw, measured in degrees.
* @param pitch pitch, measured in degrees.
* @return the same location
* @see Vector
*/
@NotNull
@Contract(value = "_,_ -> this", mutates = "this")
public Location subtractRotation(final float yaw, final float pitch) {
this.yaw -= yaw;
this.pitch -= pitch;
return this;
}
/**
* Subtracts rotation from this location.
*
* @param rotation the rotation to subtract.
* @return the same location
* @see Vector
*/
@NotNull
@Contract(value = "_ -> this", mutates = "this")
public Location subtractRotation(@NotNull Rotation rotation) {
return subtractRotation(rotation.yaw(), rotation.pitch());
}
/**
* Gets the magnitude of the location, defined as sqrt(x^2+y^2+z^2). The
* value of this method is not cached and uses a costly square-root
* function, so do not repeatedly call this method to get the location's
* magnitude. NaN will be returned if the inner result of the sqrt()
* function overflows, which will be caused if the length is too long. Not
* world-aware and orientation independent.
*
* @return the magnitude
* @see Vector
*/
public double length() {
return Math.sqrt(NumberConversions.square(x) + NumberConversions.square(y) + NumberConversions.square(z));
}
/**
* Gets the magnitude of the location squared. Not world-aware and
* orientation independent.
*
* @return the magnitude
* @see Vector
*/
public double lengthSquared() {
return NumberConversions.square(x) + NumberConversions.square(y) + NumberConversions.square(z);
}
/**
* Get the distance between this location and another. The value of this
* method is not cached and uses a costly square-root function, so do not
* repeatedly call this method to get the location's magnitude. NaN will
* be returned if the inner result of the sqrt() function overflows, which
* will be caused if the distance is too long.
*
* @param o The other location
* @return the distance
* @throws IllegalArgumentException for differing worlds
* @see Vector
*/
public double distance(@NotNull Location o) {
return Math.sqrt(distanceSquared(o));
}
/**
* Get the squared distance between this location and another.
*
* @param o The other location
* @return the distance
* @throws IllegalArgumentException for differing worlds
* @see Vector
*/
public double distanceSquared(@NotNull Location o) {
if (o == null) {
throw new IllegalArgumentException("Cannot measure distance to a null location");
} else if (o.getWorld() == null || getWorld() == null) {
throw new IllegalArgumentException("Cannot measure distance to a null world");
} else if (o.getWorld() != getWorld()) {
throw new IllegalArgumentException("Cannot measure distance between " + getWorld().getName() + " and " + o.getWorld().getName());
}
return NumberConversions.square(x - o.x) + NumberConversions.square(y - o.y) + NumberConversions.square(z - o.z);
}
/**
* Performs scalar multiplication, multiplying all components with a
* scalar. Not world-aware.
*
* @param m The factor
* @return the same location
* @see Vector
*/
@NotNull
public Location multiply(double m) {
x *= m;
y *= m;
z *= m;
return this;
}
/**
* Zero this location's components. Not world-aware.
*
* @return the same location
* @see Vector
*/
@NotNull
public Location zero() {
x = 0;
y = 0;
z = 0;
return this;
}
public boolean isChunkLoaded() {
return this.getWorld().isChunkLoaded(locToBlock(x) >> 4, locToBlock(z) >> 4);
}
/**
* Checks if a {@link Chunk} has been generated at this location.
*
* @return true if a chunk has been generated at this location
*/
public boolean isGenerated() {
World world = this.getWorld();
Preconditions.checkNotNull(world, "Location has no world!");
return world.isChunkGenerated(locToBlock(x) >> 4, locToBlock(z) >> 4);
}
/**
* Sets the position of this Location and returns itself
* <p>
* This mutates this object, clone first.
*
* @param x X coordinate
* @param y Y coordinate
* @param z Z coordinate
* @return self (not cloned)
*/
@NotNull
public Location set(double x, double y, double z) {
this.x = x;
this.y = y;
this.z = z;
return this;
}
/**
* Sets the rotation of this location and returns itself.
* <p>
* This mutates this object, clone first.
*
* @param yaw yaw, measured in degrees.
* @param pitch pitch, measured in degrees.
* @return self (not cloned)
*/
@NotNull
@Contract(value = "_,_ -> this", mutates = "this")
public Location setRotation(final float yaw, final float pitch) {
this.yaw = yaw;
this.pitch = pitch;
return this;
}
/**
* Sets the rotation of this location and returns itself.
* <p>
* This mutates this object, clone first.
*
* @param rotation the new rotation.
* @return self (not cloned)
*/
@NotNull
@Contract(value = "_ -> this", mutates = "this")
public Location setRotation(@NotNull Rotation rotation) {
return setRotation(rotation.yaw(), rotation.pitch());
}
/**
* Takes the x/y/z from base and adds the specified x/y/z to it and returns self
* <p>
* This mutates this object, clone first.
*
* @param base The base coordinate to modify
* @param x X coordinate to add to base
* @param y Y coordinate to add to base
* @param z Z coordinate to add to base
* @return self (not cloned)
*/
@NotNull
public Location add(@NotNull Location base, double x, double y, double z) {
return this.set(base.x + x, base.y + y, base.z + z);
}
/**
* Takes the x/y/z from base and subtracts the specified x/y/z to it and returns self
* <p>
* This mutates this object, clone first.
*
* @param base The base coordinate to modify
* @param x X coordinate to subtract from base
* @param y Y coordinate to subtract from base
* @param z Z coordinate to subtract from base
* @return self (not cloned)
*/
@NotNull
public Location subtract(@NotNull Location base, double x, double y, double z) {
return this.set(base.x - x, base.y - y, base.z - z);
}
/**
* @return A new location where X/Y/Z are on the Block location (integer value of X/Y/Z)
*/
@NotNull
public Location toBlockLocation() {
Location blockLoc = clone();
blockLoc.setX(getBlockX());
blockLoc.setY(getBlockY());
blockLoc.setZ(getBlockZ());
return blockLoc;
}
/**
* @return The block key for this location's block location.
* @see Block#getBlockKey(int, int, int)
* @deprecated only encodes y block ranges from -512 to 511 and represents an already changed implementation detail
*/
@Deprecated(since = "1.18.1")
public long toBlockKey() {
return Block.getBlockKey(getBlockX(), getBlockY(), getBlockZ());
}
/**
* @return A new location where X/Y/Z are the center of the block
*/
@NotNull
public Location toCenterLocation() {
Location centerLoc = clone();
centerLoc.setX(getBlockX() + 0.5);
centerLoc.setY(getBlockY() + 0.5);
centerLoc.setZ(getBlockZ() + 0.5);
return centerLoc;
}
/**
* Returns a copy of this location except with y = getWorld().getHighestBlockYAt(this.getBlockX(), this.getBlockZ())
* @return A copy of this location except with y = getWorld().getHighestBlockYAt(this.getBlockX(), this.getBlockZ())
* @throws NullPointerException if {{@link #getWorld()}} is {@code null}
*/
@NotNull
public Location toHighestLocation() {
return this.toHighestLocation(HeightMap.WORLD_SURFACE);
}
/**
* Returns a copy of this location except with y = getWorld().getHighestBlockYAt(this.getBlockX(), this.getBlockZ(), heightMap)
* @param heightMap The heightmap to use for finding the highest y location.
* @return A copy of this location except with y = getWorld().getHighestBlockYAt(this.getBlockX(), this.getBlockZ(), heightMap)
*/
@NotNull
public Location toHighestLocation(@NotNull final HeightMap heightMap) {
final Location ret = this.clone();
ret.setY(this.getWorld().getHighestBlockYAt(this, heightMap));
return ret;
}
/**
* Creates explosion at this location with given power
* <p>
* Will break blocks and ignite blocks on fire.
*
* @param power The power of explosion, where 4F is TNT
* @return false if explosion was canceled, otherwise true
*/
public boolean createExplosion(float power) {
return this.getWorld().createExplosion(this, power);
}
/**
* Creates explosion at this location with given power and optionally
* setting blocks on fire.
* <p>
* Will break blocks.
*
* @param power The power of explosion, where 4F is TNT
* @param setFire Whether to set blocks on fire
* @return false if explosion was canceled, otherwise true
*/
public boolean createExplosion(float power, boolean setFire) {
return this.getWorld().createExplosion(this, power, setFire);
}
/**
* Creates explosion at this location with given power and optionally
* setting blocks on fire.
*
* @param power The power of explosion, where 4F is TNT
* @param setFire Whether to set blocks on fire
* @param breakBlocks Whether to have blocks be destroyed
* @return false if explosion was canceled, otherwise true
*/
public boolean createExplosion(float power, boolean setFire, boolean breakBlocks) {
return this.getWorld().createExplosion(this, power, setFire, breakBlocks);
}
/**
* Creates explosion at this location with given power, with the specified entity as the source.
* <p>
* Will break blocks and ignite blocks on fire.
*
* @param source The source entity of the explosion
* @param power The power of explosion, where 4F is TNT
* @return false if explosion was canceled, otherwise true
*/
public boolean createExplosion(@Nullable Entity source, float power) {
return this.getWorld().createExplosion(source, this, power, true, true);
}
/**
* Creates explosion at this location with given power and optionally
* setting blocks on fire, with the specified entity as the source.
* <p>
* Will break blocks.
*
* @param source The source entity of the explosion
* @param power The power of explosion, where 4F is TNT
* @param setFire Whether to set blocks on fire
* @return false if explosion was canceled, otherwise true
*/
public boolean createExplosion(@Nullable Entity source, float power, boolean setFire) {
return this.getWorld().createExplosion(source, this, power, setFire, true);
}
/**
* Creates explosion at this location with given power and optionally
* setting blocks on fire, with the specified entity as the source.
*
* @param source The source entity of the explosion
* @param power The power of explosion, where 4F is TNT
* @param setFire Whether to set blocks on fire
* @param breakBlocks Whether to have blocks be destroyed
* @return false if explosion was canceled, otherwise true
*/
public boolean createExplosion(@Nullable Entity source, float power, boolean setFire, boolean breakBlocks) {
return this.getWorld().createExplosion(source, this, power, setFire, breakBlocks);
}
/**
* Returns a list of entities within a bounding box centered around a Location.
* <p>
* Some implementations may impose artificial restrictions on the size of the search bounding box.
*
* @param x 1/2 the size of the box along the x-axis
* @param y 1/2 the size of the box along the y-axis
* @param z 1/2 the size of the box along the z-axis
* @return the collection of entities near location. This will always be a non-null collection.
*/
public @NotNull Collection<Entity> getNearbyEntities(final double x, final double y, final double z) {
final World world = this.getWorld();
if (world == null) {
throw new IllegalArgumentException("Location has no world");
}
return world.getNearbyEntities(this, x, y, z);
}
/**
* Gets nearby players within the specified radius (bounding box)
* @param radius X Radius
* @return the collection of entities near location. This will always be a non-null collection.
*/
public @NotNull Collection<LivingEntity> getNearbyLivingEntities(final double radius) {
return this.getNearbyEntitiesByType(LivingEntity.class, radius, radius, radius);
}
/**
* Gets nearby players within the specified radius (bounding box)
* @param xzRadius X/Z Radius
* @param yRadius Y Radius
* @return the collection of living entities near location. This will always be a non-null collection.
*/
public @NotNull Collection<LivingEntity> getNearbyLivingEntities(final double xzRadius, final double yRadius) {
return this.getNearbyEntitiesByType(LivingEntity.class, xzRadius, yRadius, xzRadius);
}
/**
* Gets nearby players within the specified radius (bounding box)
* @param xRadius X Radius
* @param yRadius Y Radius
* @param zRadius Z radius
* @return the collection of living entities near location. This will always be a non-null collection.
*/
public @NotNull Collection<LivingEntity> getNearbyLivingEntities(final double xRadius, final double yRadius, final double zRadius) {
return this.getNearbyEntitiesByType(LivingEntity.class, xRadius, yRadius, zRadius);
}
/**
* Gets nearby players within the specified radius (bounding box)
* @param radius Radius
* @param predicate a predicate used to filter results
* @return the collection of living entities near location. This will always be a non-null collection.
*/
public @NotNull Collection<LivingEntity> getNearbyLivingEntities(final double radius, final @Nullable Predicate<? super LivingEntity> predicate) {
return this.getNearbyEntitiesByType(LivingEntity.class, radius, radius, radius, predicate);
}
/**
* Gets nearby players within the specified radius (bounding box)
* @param xzRadius X/Z Radius
* @param yRadius Y Radius
* @param predicate a predicate used to filter results
* @return the collection of living entities near location. This will always be a non-null collection.
*/
public @NotNull Collection<LivingEntity> getNearbyLivingEntities(final double xzRadius, final double yRadius, final @Nullable Predicate<? super LivingEntity> predicate) {
return this.getNearbyEntitiesByType(LivingEntity.class, xzRadius, yRadius, xzRadius, predicate);
}
/**
* Gets nearby players within the specified radius (bounding box)
* @param xRadius X Radius
* @param yRadius Y Radius
* @param zRadius Z radius
* @param predicate a predicate used to filter results
* @return the collection of living entities near location. This will always be a non-null collection.
*/
public @NotNull Collection<LivingEntity> getNearbyLivingEntities(final double xRadius, final double yRadius, final double zRadius, final @Nullable Predicate<? super LivingEntity> predicate) {
return this.getNearbyEntitiesByType(LivingEntity.class, xRadius, yRadius, zRadius, predicate);
}
/**
* Gets nearby players within the specified radius (bounding box)
* @param radius X/Y/Z Radius
* @return the collection of players near location. This will always be a non-null collection.
*/
public @NotNull Collection<Player> getNearbyPlayers(final double radius) {
return this.getNearbyEntitiesByType(Player.class, radius, radius, radius);
}
/**
* Gets nearby players within the specified radius (bounding box)
* @param xzRadius X/Z Radius
* @param yRadius Y Radius
* @return the collection of players near location. This will always be a non-null collection.
*/
public @NotNull Collection<Player> getNearbyPlayers(final double xzRadius, final double yRadius) {
return this.getNearbyEntitiesByType(Player.class, xzRadius, yRadius, xzRadius);
}
/**
* Gets nearby players within the specified radius (bounding box)
* @param xRadius X Radius
* @param yRadius Y Radius
* @param zRadius Z Radius
* @return the collection of players near location. This will always be a non-null collection.
*/
public @NotNull Collection<Player> getNearbyPlayers(final double xRadius, final double yRadius, final double zRadius) {
return this.getNearbyEntitiesByType(Player.class, xRadius, yRadius, zRadius);
}
/**
* Gets nearby players within the specified radius (bounding box)
* @param radius X/Y/Z Radius
* @param predicate a predicate used to filter results
* @return the collection of players near location. This will always be a non-null collection.
*/
public @NotNull Collection<Player> getNearbyPlayers(final double radius, final @Nullable Predicate<? super Player> predicate) {
return this.getNearbyEntitiesByType(Player.class, radius, radius, radius, predicate);
}
/**
* Gets nearby players within the specified radius (bounding box)
* @param xzRadius X/Z Radius
* @param yRadius Y Radius
* @param predicate a predicate used to filter results
* @return the collection of players near location. This will always be a non-null collection.
*/
public @NotNull Collection<Player> getNearbyPlayers(final double xzRadius, final double yRadius, final @Nullable Predicate<? super Player> predicate) {
return this.getNearbyEntitiesByType(Player.class, xzRadius, yRadius, xzRadius, predicate);
}
/**
* Gets nearby players within the specified radius (bounding box)
* @param xRadius X Radius
* @param yRadius Y Radius
* @param zRadius Z Radius
* @param predicate a predicate used to filter results
* @return the collection of players near location. This will always be a non-null collection.
*/
public @NotNull Collection<Player> getNearbyPlayers(final double xRadius, final double yRadius, final double zRadius, final @Nullable Predicate<? super Player> predicate) {
return this.getNearbyEntitiesByType(Player.class, xRadius, yRadius, zRadius, predicate);
}
/**
* Gets all nearby entities of the specified type, within the specified radius (bounding box)
* @param clazz Type to filter by
* @param radius X/Y/Z radius to search within
* @param <T> the entity type
* @return the collection of entities of type clazz near location. This will always be a non-null collection.
*/
public @NotNull <T extends Entity> Collection<T> getNearbyEntitiesByType(final @Nullable Class<? extends T> clazz, final double radius) {
return this.getNearbyEntitiesByType(clazz, radius, radius, radius, null);
}
/**
* Gets all nearby entities of the specified type, within the specified radius, with x and x radius matching (bounding box)
* @param clazz Type to filter by
* @param xzRadius X/Z radius to search within
* @param yRadius Y radius to search within
* @param <T> the entity type
* @return the collection of entities near location. This will always be a non-null collection.
*/
public @NotNull <T extends Entity> Collection<T> getNearbyEntitiesByType(final @Nullable Class<? extends T> clazz, final double xzRadius, final double yRadius) {
return this.getNearbyEntitiesByType(clazz, xzRadius, yRadius, xzRadius, null);
}
/**
* Gets all nearby entities of the specified type, within the specified radius (bounding box)
* @param clazz Type to filter by
* @param xRadius X Radius
* @param yRadius Y Radius
* @param zRadius Z Radius
* @param <T> the entity type
* @return the collection of entities near location. This will always be a non-null collection.
*/
public @NotNull <T extends Entity> Collection<T> getNearbyEntitiesByType(final @Nullable Class<? extends T> clazz, final double xRadius, final double yRadius, final double zRadius) {
return this.getNearbyEntitiesByType(clazz, xRadius, yRadius, zRadius, null);
}
/**
* Gets all nearby entities of the specified type, within the specified radius (bounding box)
* @param clazz Type to filter by
* @param radius X/Y/Z radius to search within
* @param predicate a predicate used to filter results
* @param <T> the entity type
* @return the collection of entities near location. This will always be a non-null collection.
*/
public @NotNull <T extends Entity> Collection<T> getNearbyEntitiesByType(final @Nullable Class<? extends T> clazz, final double radius, final @Nullable Predicate<? super T> predicate) {
return this.getNearbyEntitiesByType(clazz, radius, radius, radius, predicate);
}
/**
* Gets all nearby entities of the specified type, within the specified radius, with x and x radius matching (bounding box)
* @param clazz Type to filter by
* @param xzRadius X/Z radius to search within
* @param yRadius Y radius to search within
* @param predicate a predicate used to filter results
* @param <T> the entity type
* @return the collection of entities near location. This will always be a non-null collection.
*/
public @NotNull <T extends Entity> Collection<T> getNearbyEntitiesByType(final @Nullable Class<? extends T> clazz, final double xzRadius, final double yRadius, final @Nullable Predicate<? super T> predicate) {
return this.getNearbyEntitiesByType(clazz, xzRadius, yRadius, xzRadius, predicate);
}
/**
* Gets all nearby entities of the specified type, within the specified radius (bounding box)
* @param clazz Type to filter by
* @param xRadius X Radius
* @param yRadius Y Radius
* @param zRadius Z Radius
* @param predicate a predicate used to filter results
* @param <T> the entity type
* @return the collection of entities near location. This will always be a non-null collection.
*/
public @NotNull <T extends Entity> Collection<T> getNearbyEntitiesByType(final @Nullable Class<? extends Entity> clazz, final double xRadius, final double yRadius, final double zRadius, final @Nullable Predicate<? super T> predicate) {
final World world = this.getWorld();
if (world == null) {
throw new IllegalArgumentException("Location has no world");
}
return world.getNearbyEntitiesByType(clazz, this, xRadius, yRadius, zRadius, predicate);
}
@Override
public boolean equals(Object obj) {
if (obj == null) {
return false;
}
if (getClass() != obj.getClass()) {
return false;
}
final Location other = (Location) obj;
World world = (this.world == null) ? null : this.world.get();
World otherWorld = (other.world == null) ? null : other.world.get();
if (world != otherWorld && (world == null || !world.equals(otherWorld))) {
return false;
}
if (Double.doubleToLongBits(this.x) != Double.doubleToLongBits(other.x)) {
return false;
}
if (Double.doubleToLongBits(this.y) != Double.doubleToLongBits(other.y)) {
return false;
}
if (Double.doubleToLongBits(this.z) != Double.doubleToLongBits(other.z)) {
return false;
}
if (Float.floatToIntBits(this.pitch) != Float.floatToIntBits(other.pitch)) {
return false;
}
if (Float.floatToIntBits(this.yaw) != Float.floatToIntBits(other.yaw)) {
return false;
}
return true;
}
@Override
public int hashCode() {
int hash = 3;
World world = (this.world == null) ? null : this.world.get();
hash = 19 * hash + (world != null ? world.hashCode() : 0);
hash = 19 * hash + (int) (Double.doubleToLongBits(this.x) ^ (Double.doubleToLongBits(this.x) >>> 32));
hash = 19 * hash + (int) (Double.doubleToLongBits(this.y) ^ (Double.doubleToLongBits(this.y) >>> 32));
hash = 19 * hash + (int) (Double.doubleToLongBits(this.z) ^ (Double.doubleToLongBits(this.z) >>> 32));
hash = 19 * hash + Float.floatToIntBits(this.pitch);
hash = 19 * hash + Float.floatToIntBits(this.yaw);
return hash;
}
@Override
public String toString() {
World world = (this.world == null) ? null : this.world.get();
return "Location{" + "world=" + world + ",x=" + x + ",y=" + y + ",z=" + z + ",pitch=" + pitch + ",yaw=" + yaw + '}';
}
/**
* Constructs a new {@link Vector} based on this Location
*
* @return New Vector containing the coordinates represented by this
* Location
*/
@NotNull
public Vector toVector() {
return new Vector(x, y, z);
}
@Override
@NotNull
public Location clone() {
try {
return (Location) super.clone();
} catch (CloneNotSupportedException e) {
throw new Error(e);
}
}
/**
* Check if each component of this Location is finite.
*
* @throws IllegalArgumentException if any component is not finite
*/
public void checkFinite() throws IllegalArgumentException {
NumberConversions.checkFinite(x, "x not finite");
NumberConversions.checkFinite(y, "y not finite");
NumberConversions.checkFinite(z, "z not finite");
NumberConversions.checkFinite(pitch, "pitch not finite");
NumberConversions.checkFinite(yaw, "yaw not finite");
}
/**
* Safely converts a double (location coordinate) to an int (block
* coordinate)
*
* @param loc Precise coordinate
* @return Block coordinate
*/
public static int locToBlock(double loc) {
return NumberConversions.floor(loc);
}
@Override
@Utility
@NotNull
public Map<String, Object> serialize() {
Map<String, Object> data = new HashMap<String, Object>();
if (this.world != null) {
data.put("world", getWorld().getName());
}
data.put("x", this.x);
data.put("y", this.y);
data.put("z", this.z);
data.put("yaw", this.yaw);
data.put("pitch", this.pitch);
return data;
}
/**
* Required method for deserialization
*
* @param args map to deserialize
* @return deserialized location
* @throws IllegalArgumentException if the world don't exists
* @see ConfigurationSerializable
*/
@NotNull
public static Location deserialize(@NotNull Map<String, Object> args) {
World world = null;
if (args.containsKey("world")) {
world = Bukkit.getWorld((String) args.get("world"));
if (world == null) {
throw new IllegalArgumentException("unknown world");
}
}
return new Location(world, NumberConversions.toDouble(args.get("x")), NumberConversions.toDouble(args.get("y")), NumberConversions.toDouble(args.get("z")), NumberConversions.toFloat(args.get("yaw")), NumberConversions.toFloat(args.get("pitch")));
}
/**
* Normalizes the given yaw angle to a value between <code>+/-180</code>
* degrees.
*
* @param yaw the yaw in degrees
* @return the normalized yaw in degrees
* @see Location#getYaw()
*/
public static float normalizeYaw(float yaw) {
yaw %= 360.0f;
if (yaw >= 180.0f) {
yaw -= 360.0f;
} else if (yaw < -180.0f) {
yaw += 360.0f;
}
return yaw;
}
/**
* Normalizes the given pitch angle to a value between <code>+/-90</code>
* degrees.
*
* @param pitch the pitch in degrees
* @return the normalized pitch in degrees
* @see Location#getPitch()
*/
public static float normalizePitch(float pitch) {
if (pitch > 90.0f) {
pitch = 90.0f;
} else if (pitch < -90.0f) {
pitch = -90.0f;
}
return pitch;
}
@Override
public double x() {
return this.getX();
}
@Override
public double y() {
return this.getY();
}
@Override
public double z() {
return this.getZ();
}
@Override
public boolean isFinite() {
return FinePosition.super.isFinite() && Float.isFinite(this.getYaw()) && Float.isFinite(this.getPitch());
}
@Override
public @NotNull Location toLocation(@NotNull World world) {
return new Location(world, this.x(), this.y(), this.z(), this.getYaw(), this.getPitch());
}
}