mirror of
https://github.com/BurntSushi/ripgrep.git
synced 2025-07-25 17:21:57 -07:00
deps: initial migration steps to regex 1.9
This leaves the grep-regex crate in tatters. Pretty much the entire thing needs to be re-worked. The upshot is that it should result in some big simplifications. I hope. The idea here is to drop down and actually use regex-automata 0.3 instead of the regex crate itself.
This commit is contained in:
@@ -14,10 +14,10 @@ license = "Unlicense OR MIT"
|
||||
edition = "2018"
|
||||
|
||||
[dependencies]
|
||||
aho-corasick = "0.7.3"
|
||||
bstr = "1.1.0"
|
||||
aho-corasick = "1.0.2"
|
||||
bstr = "1.5.0"
|
||||
grep-matcher = { version = "0.1.6", path = "../matcher" }
|
||||
log = "0.4.5"
|
||||
regex = "1.1"
|
||||
regex-syntax = "0.6.5"
|
||||
thread_local = "1.1.2"
|
||||
regex = "1.8.3"
|
||||
regex-syntax = "0.7.2"
|
||||
thread_local = "1.1.7"
|
||||
|
@@ -71,7 +71,7 @@ impl Config {
|
||||
let ast = self.ast(pattern)?;
|
||||
let analysis = self.analysis(&ast)?;
|
||||
let expr = hir::translate::TranslatorBuilder::new()
|
||||
.allow_invalid_utf8(true)
|
||||
.utf8(false)
|
||||
.case_insensitive(self.is_case_insensitive(&analysis))
|
||||
.multi_line(self.multi_line)
|
||||
.dot_matches_new_line(self.dot_matches_new_line)
|
||||
@@ -172,7 +172,12 @@ impl ConfiguredHIR {
|
||||
/// CRLF hack is enabled and the regex is line anchored at the end. In
|
||||
/// this case, matches that end with a `\r` have the `\r` stripped.
|
||||
pub fn needs_crlf_stripped(&self) -> bool {
|
||||
self.config.crlf && self.expr.is_line_anchored_end()
|
||||
self.config.crlf
|
||||
&& self
|
||||
.expr
|
||||
.properties()
|
||||
.look_set_suffix_any()
|
||||
.contains(hir::Look::EndLF)
|
||||
}
|
||||
|
||||
/// Returns the line terminator configured on this expression.
|
||||
@@ -202,7 +207,7 @@ impl ConfiguredHIR {
|
||||
|
||||
/// Returns true if and only if the underlying HIR has any text anchors.
|
||||
fn is_any_anchored(&self) -> bool {
|
||||
self.expr.is_any_anchored_start() || self.expr.is_any_anchored_end()
|
||||
self.expr.properties().look_set().contains_anchor_haystack()
|
||||
}
|
||||
|
||||
/// Builds a regular expression from this HIR expression.
|
||||
@@ -301,7 +306,7 @@ impl ConfiguredHIR {
|
||||
let expr = ::regex_syntax::ParserBuilder::new()
|
||||
.nest_limit(self.config.nest_limit)
|
||||
.octal(self.config.octal)
|
||||
.allow_invalid_utf8(true)
|
||||
.utf8(false)
|
||||
.multi_line(self.config.multi_line)
|
||||
.dot_matches_new_line(self.config.dot_matches_new_line)
|
||||
.unicode(self.config.unicode)
|
||||
|
@@ -124,32 +124,26 @@ pub fn adjust_match(haystack: &[u8], m: Match) -> Match {
|
||||
/// nicely in most cases, especially when a match is limited to a single line.
|
||||
pub fn crlfify(expr: Hir) -> Hir {
|
||||
match expr.into_kind() {
|
||||
HirKind::Anchor(hir::Anchor::EndLine) => {
|
||||
let concat = Hir::concat(vec![
|
||||
Hir::repetition(hir::Repetition {
|
||||
kind: hir::RepetitionKind::ZeroOrOne,
|
||||
greedy: false,
|
||||
hir: Box::new(Hir::literal(hir::Literal::Unicode('\r'))),
|
||||
}),
|
||||
Hir::anchor(hir::Anchor::EndLine),
|
||||
]);
|
||||
Hir::group(hir::Group {
|
||||
kind: hir::GroupKind::NonCapturing,
|
||||
hir: Box::new(concat),
|
||||
})
|
||||
}
|
||||
HirKind::Look(hir::Look::EndLF) => Hir::concat(vec![
|
||||
Hir::repetition(hir::Repetition {
|
||||
min: 0,
|
||||
max: Some(1),
|
||||
greedy: false,
|
||||
sub: Box::new(Hir::literal("\r".as_bytes())),
|
||||
}),
|
||||
Hir::look(hir::Look::EndLF),
|
||||
]),
|
||||
HirKind::Empty => Hir::empty(),
|
||||
HirKind::Literal(x) => Hir::literal(x),
|
||||
HirKind::Literal(hir::Literal(x)) => Hir::literal(x),
|
||||
HirKind::Class(x) => Hir::class(x),
|
||||
HirKind::Anchor(x) => Hir::anchor(x),
|
||||
HirKind::WordBoundary(x) => Hir::word_boundary(x),
|
||||
HirKind::Look(x) => Hir::look(x),
|
||||
HirKind::Repetition(mut x) => {
|
||||
x.hir = Box::new(crlfify(*x.hir));
|
||||
x.sub = Box::new(crlfify(*x.sub));
|
||||
Hir::repetition(x)
|
||||
}
|
||||
HirKind::Group(mut x) => {
|
||||
x.hir = Box::new(crlfify(*x.hir));
|
||||
Hir::group(x)
|
||||
HirKind::Capture(mut x) => {
|
||||
x.sub = Box::new(crlfify(*x.sub));
|
||||
Hir::capture(x)
|
||||
}
|
||||
HirKind::Concat(xs) => {
|
||||
Hir::concat(xs.into_iter().map(crlfify).collect())
|
||||
@@ -174,12 +168,12 @@ mod tests {
|
||||
#[test]
|
||||
fn various() {
|
||||
assert_eq!(roundtrip(r"(?m)$"), "(?:\r??(?m:$))");
|
||||
assert_eq!(roundtrip(r"(?m)$$"), "(?:\r??(?m:$))(?:\r??(?m:$))");
|
||||
assert_eq!(roundtrip(r"(?m)$$"), "(?:\r??(?m:$)\r??(?m:$))");
|
||||
assert_eq!(
|
||||
roundtrip(r"(?m)(?:foo$|bar$)"),
|
||||
"(?:foo(?:\r??(?m:$))|bar(?:\r??(?m:$)))"
|
||||
"(?:(?:(?:foo)\r??(?m:$))|(?:(?:bar)\r??(?m:$)))"
|
||||
);
|
||||
assert_eq!(roundtrip(r"(?m)$a"), "(?:\r??(?m:$))a");
|
||||
assert_eq!(roundtrip(r"(?m)$a"), "(?:\r??(?m:$)a)");
|
||||
|
||||
// Not a multiline `$`, so no crlfifying occurs.
|
||||
assert_eq!(roundtrip(r"$"), "\\z");
|
||||
|
@@ -1,43 +1,12 @@
|
||||
/*
|
||||
This module is responsible for extracting *inner* literals out of the AST of a
|
||||
regular expression. Normally this is the job of the regex engine itself, but
|
||||
the regex engine doesn't look for inner literals. Since we're doing line based
|
||||
searching, we can use them, so we need to do it ourselves.
|
||||
*/
|
||||
use regex_syntax::hir::Hir;
|
||||
|
||||
use bstr::ByteSlice;
|
||||
use regex_syntax::hir::literal::{Literal, Literals};
|
||||
use regex_syntax::hir::{self, Hir, HirKind};
|
||||
|
||||
use crate::util;
|
||||
|
||||
/// Represents prefix, suffix and inner "required" literals for a regular
|
||||
/// expression.
|
||||
///
|
||||
/// Prefixes and suffixes are detected using regex-syntax. The inner required
|
||||
/// literals are detected using something custom (but based on the code in
|
||||
/// regex-syntax).
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct LiteralSets {
|
||||
/// A set of prefix literals.
|
||||
prefixes: Literals,
|
||||
/// A set of suffix literals.
|
||||
suffixes: Literals,
|
||||
/// A set of literals such that at least one of them must appear in every
|
||||
/// match. A literal in this set may be neither a prefix nor a suffix.
|
||||
required: Literals,
|
||||
}
|
||||
pub struct LiteralSets {}
|
||||
|
||||
impl LiteralSets {
|
||||
/// Create a set of literals from the given HIR expression.
|
||||
pub fn new(expr: &Hir) -> LiteralSets {
|
||||
let mut required = Literals::empty();
|
||||
union_required(expr, &mut required);
|
||||
LiteralSets {
|
||||
prefixes: Literals::prefixes(expr),
|
||||
suffixes: Literals::suffixes(expr),
|
||||
required,
|
||||
}
|
||||
pub fn new(_: &Hir) -> LiteralSets {
|
||||
LiteralSets {}
|
||||
}
|
||||
|
||||
/// If it is deemed advantageuous to do so (via various suspicious
|
||||
@@ -46,383 +15,7 @@ impl LiteralSets {
|
||||
/// generated these literal sets. The idea here is that the pattern
|
||||
/// returned by this method is much cheaper to search for. i.e., It is
|
||||
/// usually a single literal or an alternation of literals.
|
||||
pub fn one_regex(&self, word: bool) -> Option<String> {
|
||||
// TODO: The logic in this function is basically inscrutable. It grew
|
||||
// organically in the old grep 0.1 crate. Ideally, it would be
|
||||
// re-worked. In fact, the entire inner literal extraction should be
|
||||
// re-worked. Actually, most of regex-syntax's literal extraction
|
||||
// should also be re-worked. Alas... only so much time in the day.
|
||||
|
||||
if !word {
|
||||
if self.prefixes.all_complete() && !self.prefixes.is_empty() {
|
||||
log::debug!("literal prefixes detected: {:?}", self.prefixes);
|
||||
// When this is true, the regex engine will do a literal scan,
|
||||
// so we don't need to return anything. But we only do this
|
||||
// if we aren't doing a word regex, since a word regex adds
|
||||
// a `(?:\W|^)` to the beginning of the regex, thereby
|
||||
// defeating the regex engine's literal detection.
|
||||
return None;
|
||||
}
|
||||
}
|
||||
|
||||
// Out of inner required literals, prefixes and suffixes, which one
|
||||
// is the longest? We pick the longest to do fast literal scan under
|
||||
// the assumption that a longer literal will have a lower false
|
||||
// positive rate.
|
||||
let pre_lcp = self.prefixes.longest_common_prefix();
|
||||
let pre_lcs = self.prefixes.longest_common_suffix();
|
||||
let suf_lcp = self.suffixes.longest_common_prefix();
|
||||
let suf_lcs = self.suffixes.longest_common_suffix();
|
||||
|
||||
let req_lits = self.required.literals();
|
||||
let req = match req_lits.iter().max_by_key(|lit| lit.len()) {
|
||||
None => &[],
|
||||
Some(req) => &***req,
|
||||
};
|
||||
|
||||
let mut lit = pre_lcp;
|
||||
if pre_lcs.len() > lit.len() {
|
||||
lit = pre_lcs;
|
||||
}
|
||||
if suf_lcp.len() > lit.len() {
|
||||
lit = suf_lcp;
|
||||
}
|
||||
if suf_lcs.len() > lit.len() {
|
||||
lit = suf_lcs;
|
||||
}
|
||||
if req_lits.len() == 1 && req.len() > lit.len() {
|
||||
lit = req;
|
||||
}
|
||||
|
||||
// Special case: if we detected an alternation of inner required
|
||||
// literals and its longest literal is bigger than the longest
|
||||
// prefix/suffix, then choose the alternation. In practice, this
|
||||
// helps with case insensitive matching, which can generate lots of
|
||||
// inner required literals.
|
||||
let any_empty = req_lits.iter().any(|lit| lit.is_empty());
|
||||
let any_white = has_only_whitespace(&req_lits);
|
||||
if req.len() > lit.len()
|
||||
&& req_lits.len() > 1
|
||||
&& !any_empty
|
||||
&& !any_white
|
||||
{
|
||||
log::debug!("required literals found: {:?}", req_lits);
|
||||
let alts: Vec<String> = req_lits
|
||||
.into_iter()
|
||||
.map(|x| util::bytes_to_regex(x))
|
||||
.collect();
|
||||
// We're matching raw bytes, so disable Unicode mode.
|
||||
Some(format!("(?-u:{})", alts.join("|")))
|
||||
} else if lit.is_empty() {
|
||||
// If we're here, then we have no LCP. No LCS. And no detected
|
||||
// inner required literals. In theory this shouldn't happen, but
|
||||
// the inner literal detector isn't as nice as we hope and doesn't
|
||||
// actually support returning a set of alternating required
|
||||
// literals. (Instead, it only returns a set where EVERY literal
|
||||
// in it is required. It cannot currently express "either P or Q
|
||||
// is required.")
|
||||
//
|
||||
// In this case, it is possible that we still have meaningful
|
||||
// prefixes or suffixes to use. So we look for the set of literals
|
||||
// with the highest minimum length and use that to build our "fast"
|
||||
// regex.
|
||||
//
|
||||
// This manifests in fairly common scenarios. e.g.,
|
||||
//
|
||||
// rg -w 'foo|bar|baz|quux'
|
||||
//
|
||||
// Normally, without the `-w`, the regex engine itself would
|
||||
// detect the prefix correctly. Unfortunately, the `-w` option
|
||||
// turns the regex into something like this:
|
||||
//
|
||||
// rg '(^|\W)(foo|bar|baz|quux)($|\W)'
|
||||
//
|
||||
// Which will defeat all prefix and suffix literal optimizations.
|
||||
// (Not in theory---it could be better. But the current
|
||||
// implementation isn't good enough.) ... So we make up for it
|
||||
// here.
|
||||
if !word {
|
||||
return None;
|
||||
}
|
||||
let p_min_len = self.prefixes.min_len();
|
||||
let s_min_len = self.suffixes.min_len();
|
||||
let lits = match (p_min_len, s_min_len) {
|
||||
(None, None) => return None,
|
||||
(Some(_), None) => {
|
||||
log::debug!("prefix literals found");
|
||||
self.prefixes.literals()
|
||||
}
|
||||
(None, Some(_)) => {
|
||||
log::debug!("suffix literals found");
|
||||
self.suffixes.literals()
|
||||
}
|
||||
(Some(p), Some(s)) => {
|
||||
if p >= s {
|
||||
log::debug!("prefix literals found");
|
||||
self.prefixes.literals()
|
||||
} else {
|
||||
log::debug!("suffix literals found");
|
||||
self.suffixes.literals()
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
log::debug!("prefix/suffix literals found: {:?}", lits);
|
||||
if has_only_whitespace(lits) {
|
||||
log::debug!("dropping literals because one was whitespace");
|
||||
return None;
|
||||
}
|
||||
let alts: Vec<String> =
|
||||
lits.into_iter().map(|x| util::bytes_to_regex(x)).collect();
|
||||
// We're matching raw bytes, so disable Unicode mode.
|
||||
Some(format!("(?-u:{})", alts.join("|")))
|
||||
} else {
|
||||
log::debug!("required literal found: {:?}", util::show_bytes(lit));
|
||||
if lit.chars().all(|c| c.is_whitespace()) {
|
||||
log::debug!("dropping literal because one was whitespace");
|
||||
return None;
|
||||
}
|
||||
Some(format!("(?-u:{})", util::bytes_to_regex(&lit)))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn union_required(expr: &Hir, lits: &mut Literals) {
|
||||
match *expr.kind() {
|
||||
HirKind::Literal(hir::Literal::Unicode(c)) => {
|
||||
let mut buf = [0u8; 4];
|
||||
lits.cross_add(c.encode_utf8(&mut buf).as_bytes());
|
||||
}
|
||||
HirKind::Literal(hir::Literal::Byte(b)) => {
|
||||
lits.cross_add(&[b]);
|
||||
}
|
||||
HirKind::Class(hir::Class::Unicode(ref cls)) => {
|
||||
if count_unicode_class(cls) >= 5 || !lits.add_char_class(cls) {
|
||||
lits.cut();
|
||||
}
|
||||
}
|
||||
HirKind::Class(hir::Class::Bytes(ref cls)) => {
|
||||
if count_byte_class(cls) >= 5 || !lits.add_byte_class(cls) {
|
||||
lits.cut();
|
||||
}
|
||||
}
|
||||
HirKind::Group(hir::Group { ref hir, .. }) => {
|
||||
union_required(&**hir, lits);
|
||||
}
|
||||
HirKind::Repetition(ref x) => match x.kind {
|
||||
hir::RepetitionKind::ZeroOrOne => lits.cut(),
|
||||
hir::RepetitionKind::ZeroOrMore => lits.cut(),
|
||||
hir::RepetitionKind::OneOrMore => {
|
||||
union_required(&x.hir, lits);
|
||||
}
|
||||
hir::RepetitionKind::Range(ref rng) => {
|
||||
let (min, max) = match *rng {
|
||||
hir::RepetitionRange::Exactly(m) => (m, Some(m)),
|
||||
hir::RepetitionRange::AtLeast(m) => (m, None),
|
||||
hir::RepetitionRange::Bounded(m, n) => (m, Some(n)),
|
||||
};
|
||||
repeat_range_literals(
|
||||
&x.hir,
|
||||
min,
|
||||
max,
|
||||
x.greedy,
|
||||
lits,
|
||||
union_required,
|
||||
);
|
||||
}
|
||||
},
|
||||
HirKind::Concat(ref es) if es.is_empty() => {}
|
||||
HirKind::Concat(ref es) if es.len() == 1 => {
|
||||
union_required(&es[0], lits)
|
||||
}
|
||||
HirKind::Concat(ref es) => {
|
||||
for e in es {
|
||||
let mut lits2 = lits.to_empty();
|
||||
union_required(e, &mut lits2);
|
||||
if lits2.is_empty() {
|
||||
lits.cut();
|
||||
continue;
|
||||
}
|
||||
if lits2.contains_empty() || !is_simple(&e) {
|
||||
lits.cut();
|
||||
}
|
||||
if !lits.cross_product(&lits2) || !lits2.any_complete() {
|
||||
// If this expression couldn't yield any literal that
|
||||
// could be extended, then we need to quit. Since we're
|
||||
// short-circuiting, we also need to freeze every member.
|
||||
lits.cut();
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
HirKind::Alternation(ref es) => {
|
||||
alternate_literals(es, lits, union_required);
|
||||
}
|
||||
_ => lits.cut(),
|
||||
}
|
||||
}
|
||||
|
||||
fn repeat_range_literals<F: FnMut(&Hir, &mut Literals)>(
|
||||
e: &Hir,
|
||||
min: u32,
|
||||
_max: Option<u32>,
|
||||
_greedy: bool,
|
||||
lits: &mut Literals,
|
||||
mut f: F,
|
||||
) {
|
||||
if min == 0 {
|
||||
// This is a bit conservative. If `max` is set, then we could
|
||||
// treat this as a finite set of alternations. For now, we
|
||||
// just treat it as `e*`.
|
||||
lits.cut();
|
||||
} else {
|
||||
// We only extract literals from a single repetition, even though
|
||||
// we could do more. e.g., `a{3}` will have `a` extracted instead of
|
||||
// `aaa`. The reason is that inner literal extraction can't be unioned
|
||||
// across repetitions. e.g., extracting `foofoofoo` from `(\w+foo){3}`
|
||||
// is wrong.
|
||||
f(e, lits);
|
||||
lits.cut();
|
||||
}
|
||||
}
|
||||
|
||||
fn alternate_literals<F: FnMut(&Hir, &mut Literals)>(
|
||||
es: &[Hir],
|
||||
lits: &mut Literals,
|
||||
mut f: F,
|
||||
) {
|
||||
let mut lits2 = lits.to_empty();
|
||||
for e in es {
|
||||
let mut lits3 = lits.to_empty();
|
||||
lits3.set_limit_size(lits.limit_size() / 5);
|
||||
f(e, &mut lits3);
|
||||
if lits3.is_empty() || !lits2.union(lits3) {
|
||||
// If we couldn't find suffixes for *any* of the
|
||||
// alternates, then the entire alternation has to be thrown
|
||||
// away and any existing members must be frozen. Similarly,
|
||||
// if the union couldn't complete, stop and freeze.
|
||||
lits.cut();
|
||||
return;
|
||||
}
|
||||
}
|
||||
// All we do at the moment is look for prefixes and suffixes. If both
|
||||
// are empty, then we report nothing. We should be able to do better than
|
||||
// this, but we'll need something more expressive than just a "set of
|
||||
// literals."
|
||||
let lcp = lits2.longest_common_prefix();
|
||||
let lcs = lits2.longest_common_suffix();
|
||||
if !lcp.is_empty() {
|
||||
lits.cross_add(lcp);
|
||||
}
|
||||
lits.cut();
|
||||
if !lcs.is_empty() {
|
||||
lits.add(Literal::empty());
|
||||
lits.add(Literal::new(lcs.to_vec()));
|
||||
}
|
||||
}
|
||||
|
||||
fn is_simple(expr: &Hir) -> bool {
|
||||
match *expr.kind() {
|
||||
HirKind::Empty
|
||||
| HirKind::Literal(_)
|
||||
| HirKind::Class(_)
|
||||
| HirKind::Concat(_)
|
||||
| HirKind::Alternation(_) => true,
|
||||
HirKind::Anchor(_)
|
||||
| HirKind::WordBoundary(_)
|
||||
| HirKind::Group(_)
|
||||
| HirKind::Repetition(_) => false,
|
||||
}
|
||||
}
|
||||
|
||||
/// Return the number of characters in the given class.
|
||||
fn count_unicode_class(cls: &hir::ClassUnicode) -> u32 {
|
||||
cls.iter().map(|r| 1 + (r.end() as u32 - r.start() as u32)).sum()
|
||||
}
|
||||
|
||||
/// Return the number of bytes in the given class.
|
||||
fn count_byte_class(cls: &hir::ClassBytes) -> u32 {
|
||||
cls.iter().map(|r| 1 + (r.end() as u32 - r.start() as u32)).sum()
|
||||
}
|
||||
|
||||
/// Returns true if and only if any of the literals in the given set is
|
||||
/// entirely whitespace.
|
||||
fn has_only_whitespace(lits: &[Literal]) -> bool {
|
||||
for lit in lits {
|
||||
if lit.chars().all(|c| c.is_whitespace()) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
false
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::LiteralSets;
|
||||
use regex_syntax::Parser;
|
||||
|
||||
fn sets(pattern: &str) -> LiteralSets {
|
||||
let hir = Parser::new().parse(pattern).unwrap();
|
||||
LiteralSets::new(&hir)
|
||||
}
|
||||
|
||||
fn one_regex(pattern: &str) -> Option<String> {
|
||||
sets(pattern).one_regex(false)
|
||||
}
|
||||
|
||||
// Put a pattern into the same format as the one returned by `one_regex`.
|
||||
fn pat(pattern: &str) -> Option<String> {
|
||||
Some(format!("(?-u:{})", pattern))
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn various() {
|
||||
// Obviously no literals.
|
||||
assert!(one_regex(r"\w").is_none());
|
||||
assert!(one_regex(r"\pL").is_none());
|
||||
|
||||
// Tantalizingly close.
|
||||
assert!(one_regex(r"\w|foo").is_none());
|
||||
|
||||
// There's a literal, but it's better if the regex engine handles it
|
||||
// internally.
|
||||
assert!(one_regex(r"abc").is_none());
|
||||
|
||||
// Core use cases.
|
||||
assert_eq!(one_regex(r"\wabc\w"), pat("abc"));
|
||||
assert_eq!(one_regex(r"abc\w"), pat("abc"));
|
||||
|
||||
// TODO: Make these pass. We're missing some potentially big wins
|
||||
// without these.
|
||||
// assert_eq!(one_regex(r"\w(foo|bar|baz)"), pat("foo|bar|baz"));
|
||||
// assert_eq!(one_regex(r"\w(foo|bar|baz)\w"), pat("foo|bar|baz"));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn regression_1064() {
|
||||
// Regression from:
|
||||
// https://github.com/BurntSushi/ripgrep/issues/1064
|
||||
// assert_eq!(one_regex(r"a.*c"), pat("a"));
|
||||
assert_eq!(one_regex(r"a(.*c)"), pat("a"));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn regression_1319() {
|
||||
// Regression from:
|
||||
// https://github.com/BurntSushi/ripgrep/issues/1319
|
||||
assert_eq!(
|
||||
one_regex(r"TTGAGTCCAGGAG[ATCG]{2}C"),
|
||||
pat("TTGAGTCCAGGAG"),
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn regression_1537() {
|
||||
// Regression from:
|
||||
// https://github.com/BurntSushi/ripgrep/issues/1537
|
||||
assert_eq!(one_regex(r";(.*,)"), pat(";"));
|
||||
assert_eq!(one_regex(r";((.*,))"), pat(";"));
|
||||
assert_eq!(one_regex(r";(.*,)+"), pat(";"),);
|
||||
assert_eq!(one_regex(r";(.*,){1}"), pat(";"),);
|
||||
pub fn one_regex(&self, _word: bool) -> Option<String> {
|
||||
None
|
||||
}
|
||||
}
|
||||
|
466
crates/regex/src/literalold.rs
Normal file
466
crates/regex/src/literalold.rs
Normal file
@@ -0,0 +1,466 @@
|
||||
/*
|
||||
This module is responsible for extracting *inner* literals out of the AST of a
|
||||
regular expression. Normally this is the job of the regex engine itself, but
|
||||
the regex engine doesn't look for inner literals. Since we're doing line based
|
||||
searching, we can use them, so we need to do it ourselves.
|
||||
*/
|
||||
|
||||
use {
|
||||
bstr::ByteSlice,
|
||||
regex_syntax::hir::{
|
||||
self,
|
||||
literal::{self, Literal, Seq},
|
||||
Hir, HirKind,
|
||||
},
|
||||
};
|
||||
|
||||
use crate::util;
|
||||
|
||||
/// Represents prefix, suffix and inner "required" literals for a regular
|
||||
/// expression.
|
||||
///
|
||||
/// Prefixes and suffixes are detected using regex-syntax. The inner required
|
||||
/// literals are detected using something custom (but based on the code in
|
||||
/// regex-syntax).
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct LiteralSets {
|
||||
/// A set of prefix literals.
|
||||
prefixes: Seq,
|
||||
/// A set of suffix literals.
|
||||
suffixes: Seq,
|
||||
/// A set of literals such that at least one of them must appear in every
|
||||
/// match. A literal in this set may be neither a prefix nor a suffix.
|
||||
required: Seq,
|
||||
}
|
||||
|
||||
impl LiteralSets {
|
||||
/// Create a set of literals from the given HIR expression.
|
||||
pub fn new(expr: &Hir) -> LiteralSets {
|
||||
let mut required = Seq::singleton(Literal::exact(vec![]));
|
||||
union_required(expr, &mut required);
|
||||
LiteralSets {
|
||||
prefixes: prefixes(expr),
|
||||
suffixes: suffixes(expr),
|
||||
required,
|
||||
}
|
||||
}
|
||||
|
||||
/// If it is deemed advantageuous to do so (via various suspicious
|
||||
/// heuristics), this will return a single regular expression pattern that
|
||||
/// matches a subset of the language matched by the regular expression that
|
||||
/// generated these literal sets. The idea here is that the pattern
|
||||
/// returned by this method is much cheaper to search for. i.e., It is
|
||||
/// usually a single literal or an alternation of literals.
|
||||
pub fn one_regex(&self, word: bool) -> Option<String> {
|
||||
// TODO: The logic in this function is basically inscrutable. It grew
|
||||
// organically in the old grep 0.1 crate. Ideally, it would be
|
||||
// re-worked. In fact, the entire inner literal extraction should be
|
||||
// re-worked. Actually, most of regex-syntax's literal extraction
|
||||
// should also be re-worked. Alas... only so much time in the day.
|
||||
|
||||
if !word {
|
||||
if self.prefixes.is_exact() && !self.prefixes.is_empty() {
|
||||
log::debug!("literal prefixes detected: {:?}", self.prefixes);
|
||||
// When this is true, the regex engine will do a literal scan,
|
||||
// so we don't need to return anything. But we only do this
|
||||
// if we aren't doing a word regex, since a word regex adds
|
||||
// a `(?:\W|^)` to the beginning of the regex, thereby
|
||||
// defeating the regex engine's literal detection.
|
||||
return None;
|
||||
}
|
||||
}
|
||||
|
||||
// Out of inner required literals, prefixes and suffixes, which one
|
||||
// is the longest? We pick the longest to do fast literal scan under
|
||||
// the assumption that a longer literal will have a lower false
|
||||
// positive rate.
|
||||
let pre_lcp = self.prefixes.longest_common_prefix().unwrap_or(&[]);
|
||||
let pre_lcs = self.prefixes.longest_common_suffix().unwrap_or(&[]);
|
||||
let suf_lcp = self.suffixes.longest_common_prefix().unwrap_or(&[]);
|
||||
let suf_lcs = self.suffixes.longest_common_suffix().unwrap_or(&[]);
|
||||
|
||||
let req_lits = self.required.literals().unwrap_or(&[]);
|
||||
let req = match req_lits.iter().max_by_key(|lit| lit.len()) {
|
||||
None => &[],
|
||||
Some(req) => req.as_bytes(),
|
||||
};
|
||||
|
||||
let mut lit = pre_lcp;
|
||||
if pre_lcs.len() > lit.len() {
|
||||
lit = pre_lcs;
|
||||
}
|
||||
if suf_lcp.len() > lit.len() {
|
||||
lit = suf_lcp;
|
||||
}
|
||||
if suf_lcs.len() > lit.len() {
|
||||
lit = suf_lcs;
|
||||
}
|
||||
if req_lits.len() == 1 && req.len() > lit.len() {
|
||||
lit = req;
|
||||
}
|
||||
|
||||
// Special case: if we detected an alternation of inner required
|
||||
// literals and its longest literal is bigger than the longest
|
||||
// prefix/suffix, then choose the alternation. In practice, this
|
||||
// helps with case insensitive matching, which can generate lots of
|
||||
// inner required literals.
|
||||
let any_empty = req_lits.iter().any(|lit| lit.is_empty());
|
||||
let any_white = has_only_whitespace(&req_lits);
|
||||
if req.len() > lit.len()
|
||||
&& req_lits.len() > 1
|
||||
&& !any_empty
|
||||
&& !any_white
|
||||
{
|
||||
log::debug!("required literals found: {:?}", req_lits);
|
||||
let alts: Vec<String> = req_lits
|
||||
.into_iter()
|
||||
.map(|x| util::bytes_to_regex(x.as_bytes()))
|
||||
.collect();
|
||||
// We're matching raw bytes, so disable Unicode mode.
|
||||
Some(format!("(?-u:{})", alts.join("|")))
|
||||
} else if lit.is_empty() {
|
||||
// If we're here, then we have no LCP. No LCS. And no detected
|
||||
// inner required literals. In theory this shouldn't happen, but
|
||||
// the inner literal detector isn't as nice as we hope and doesn't
|
||||
// actually support returning a set of alternating required
|
||||
// literals. (Instead, it only returns a set where EVERY literal
|
||||
// in it is required. It cannot currently express "either P or Q
|
||||
// is required.")
|
||||
//
|
||||
// In this case, it is possible that we still have meaningful
|
||||
// prefixes or suffixes to use. So we look for the set of literals
|
||||
// with the highest minimum length and use that to build our "fast"
|
||||
// regex.
|
||||
//
|
||||
// This manifests in fairly common scenarios. e.g.,
|
||||
//
|
||||
// rg -w 'foo|bar|baz|quux'
|
||||
//
|
||||
// Normally, without the `-w`, the regex engine itself would
|
||||
// detect the prefix correctly. Unfortunately, the `-w` option
|
||||
// turns the regex into something like this:
|
||||
//
|
||||
// rg '(^|\W)(foo|bar|baz|quux)($|\W)'
|
||||
//
|
||||
// Which will defeat all prefix and suffix literal optimizations.
|
||||
// (Not in theory---it could be better. But the current
|
||||
// implementation isn't good enough.) ... So we make up for it
|
||||
// here.
|
||||
if !word {
|
||||
return None;
|
||||
}
|
||||
let p_min_len = self.prefixes.min_literal_len();
|
||||
let s_min_len = self.suffixes.min_literal_len();
|
||||
let lits = match (p_min_len, s_min_len) {
|
||||
(None, None) => return None,
|
||||
(Some(_), None) => {
|
||||
log::debug!("prefix literals found");
|
||||
self.prefixes.literals().unwrap()
|
||||
}
|
||||
(None, Some(_)) => {
|
||||
log::debug!("suffix literals found");
|
||||
self.suffixes.literals().unwrap()
|
||||
}
|
||||
(Some(p), Some(s)) => {
|
||||
if p >= s {
|
||||
log::debug!("prefix literals found");
|
||||
self.prefixes.literals().unwrap()
|
||||
} else {
|
||||
log::debug!("suffix literals found");
|
||||
self.suffixes.literals().unwrap()
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
log::debug!("prefix/suffix literals found: {:?}", lits);
|
||||
if has_only_whitespace(lits) {
|
||||
log::debug!("dropping literals because one was whitespace");
|
||||
return None;
|
||||
}
|
||||
let alts: Vec<String> = lits
|
||||
.into_iter()
|
||||
.map(|x| util::bytes_to_regex(x.as_bytes()))
|
||||
.collect();
|
||||
// We're matching raw bytes, so disable Unicode mode.
|
||||
Some(format!("(?-u:{})", alts.join("|")))
|
||||
} else {
|
||||
log::debug!("required literal found: {:?}", util::show_bytes(lit));
|
||||
if lit.chars().all(|c| c.is_whitespace()) {
|
||||
log::debug!("dropping literal because one was whitespace");
|
||||
return None;
|
||||
}
|
||||
Some(format!("(?-u:{})", util::bytes_to_regex(&lit)))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn union_required(expr: &Hir, lits: &mut Seq) {
|
||||
match *expr.kind() {
|
||||
HirKind::Literal(hir::Literal(ref bytes)) => {
|
||||
lits.cross_forward(&mut Seq::new([bytes]));
|
||||
}
|
||||
HirKind::Class(hir::Class::Unicode(_)) => {
|
||||
lits.make_inexact();
|
||||
}
|
||||
HirKind::Class(hir::Class::Bytes(_)) => {
|
||||
lits.make_inexact();
|
||||
}
|
||||
HirKind::Capture(hir::Capture { ref sub, .. }) => {
|
||||
union_required(&**sub, lits);
|
||||
}
|
||||
HirKind::Repetition(hir::Repetition { min, max, greedy, ref sub }) => {
|
||||
repeat_range_literals(
|
||||
&sub,
|
||||
min,
|
||||
max,
|
||||
greedy,
|
||||
lits,
|
||||
union_required,
|
||||
);
|
||||
}
|
||||
HirKind::Concat(ref es) if es.is_empty() => {}
|
||||
HirKind::Concat(ref es) if es.len() == 1 => {
|
||||
union_required(&es[0], lits)
|
||||
}
|
||||
HirKind::Concat(ref es) => {
|
||||
for e in es {
|
||||
let mut lits2 = Seq::singleton(Literal::exact(vec![]));
|
||||
union_required(e, &mut lits2);
|
||||
if lits2.len() == Some(1) && lits2.min_literal_len() == Some(0)
|
||||
{
|
||||
lits.make_inexact();
|
||||
continue;
|
||||
}
|
||||
if lits2.min_literal_len() == Some(0) || !is_simple(&e) {
|
||||
lits.make_inexact();
|
||||
}
|
||||
lits.cross_forward(&mut lits2);
|
||||
if lits2.is_inexact() {
|
||||
// If this expression couldn't yield any literal that
|
||||
// could be extended, then we need to quit. Since we're
|
||||
// short-circuiting, we also need to freeze every member.
|
||||
lits.make_inexact();
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
HirKind::Alternation(ref es) => {
|
||||
alternate_literals(es, lits, union_required);
|
||||
}
|
||||
_ => lits.make_inexact(),
|
||||
}
|
||||
}
|
||||
|
||||
fn repeat_range_literals<F: FnMut(&Hir, &mut Seq)>(
|
||||
e: &Hir,
|
||||
min: u32,
|
||||
_max: Option<u32>,
|
||||
_greedy: bool,
|
||||
lits: &mut Seq,
|
||||
mut f: F,
|
||||
) {
|
||||
if min == 0 {
|
||||
// This is a bit conservative. If `max` is set, then we could
|
||||
// treat this as a finite set of alternations. For now, we
|
||||
// just treat it as `e*`.
|
||||
lits.make_inexact();
|
||||
} else {
|
||||
// We only extract literals from a single repetition, even though
|
||||
// we could do more. e.g., `a{3}` will have `a` extracted instead of
|
||||
// `aaa`. The reason is that inner literal extraction can't be unioned
|
||||
// across repetitions. e.g., extracting `foofoofoo` from `(\w+foo){3}`
|
||||
// is wrong.
|
||||
f(e, lits);
|
||||
lits.make_inexact();
|
||||
}
|
||||
}
|
||||
|
||||
fn alternate_literals<F: FnMut(&Hir, &mut Seq)>(
|
||||
es: &[Hir],
|
||||
lits: &mut Seq,
|
||||
mut f: F,
|
||||
) {
|
||||
let mut lits2 = Seq::empty();
|
||||
for e in es {
|
||||
let mut lits3 = Seq::empty();
|
||||
// FIXME
|
||||
// lits3.set_limit_size(lits.limit_size() / 5);
|
||||
f(e, &mut lits3);
|
||||
if lits3.is_empty() {
|
||||
lits.make_inexact();
|
||||
return;
|
||||
}
|
||||
lits2.union(&mut lits3);
|
||||
}
|
||||
// All we do at the moment is look for prefixes and suffixes. If both
|
||||
// are empty, then we report nothing. We should be able to do better than
|
||||
// this, but we'll need something more expressive than just a "set of
|
||||
// literals."
|
||||
if let Some(lcp) = lits2.longest_common_prefix() {
|
||||
lits.cross_forward(&mut Seq::new([lcp]));
|
||||
}
|
||||
lits.make_inexact();
|
||||
if let Some(lcs) = lits2.longest_common_suffix() {
|
||||
lits.push(Literal::exact([]));
|
||||
lits.push(Literal::exact(lcs));
|
||||
}
|
||||
/*
|
||||
let lcp = lits2.longest_common_prefix();
|
||||
let lcs = lits2.longest_common_suffix();
|
||||
if !lcp.is_empty() {
|
||||
lits.cross_forward(lcp);
|
||||
}
|
||||
lits.make_inexact();
|
||||
if !lcs.is_empty() {
|
||||
lits.push(Literal::exact([]));
|
||||
lits.push(Literal::exact(lcs));
|
||||
}
|
||||
*/
|
||||
}
|
||||
|
||||
fn is_simple(expr: &Hir) -> bool {
|
||||
match *expr.kind() {
|
||||
HirKind::Empty
|
||||
| HirKind::Literal(_)
|
||||
| HirKind::Class(_)
|
||||
| HirKind::Concat(_)
|
||||
| HirKind::Alternation(_) => true,
|
||||
HirKind::Look(_) | HirKind::Capture(_) | HirKind::Repetition(_) => {
|
||||
false
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
/// Return the number of characters in the given class.
|
||||
fn count_unicode_class(cls: &hir::ClassUnicode) -> u32 {
|
||||
cls.iter().map(|r| 1 + (r.end() as u32 - r.start() as u32)).sum()
|
||||
}
|
||||
|
||||
/// Return the number of bytes in the given class.
|
||||
fn count_byte_class(cls: &hir::ClassBytes) -> u32 {
|
||||
cls.iter().map(|r| 1 + (r.end() as u32 - r.start() as u32)).sum()
|
||||
}
|
||||
*/
|
||||
|
||||
/// Returns true if and only if any of the literals in the given set is
|
||||
/// entirely whitespace.
|
||||
fn has_only_whitespace(lits: &[Literal]) -> bool {
|
||||
for lit in lits {
|
||||
if lit.as_bytes().chars().all(|c| c.is_whitespace()) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
false
|
||||
}
|
||||
|
||||
fn prefixes(hir: &Hir) -> Seq {
|
||||
let mut extractor = literal::Extractor::new();
|
||||
extractor.kind(literal::ExtractKind::Prefix);
|
||||
let mut prefixes = extractor.extract(hir);
|
||||
log::debug!(
|
||||
"prefixes (len={:?}, exact={:?}) extracted before optimization: {:?}",
|
||||
prefixes.len(),
|
||||
prefixes.is_exact(),
|
||||
prefixes
|
||||
);
|
||||
prefixes.optimize_for_prefix_by_preference();
|
||||
log::debug!(
|
||||
"prefixes (len={:?}, exact={:?}) extracted after optimization: {:?}",
|
||||
prefixes.len(),
|
||||
prefixes.is_exact(),
|
||||
prefixes
|
||||
);
|
||||
prefixes
|
||||
}
|
||||
|
||||
fn suffixes(hir: &Hir) -> Seq {
|
||||
let mut extractor = literal::Extractor::new();
|
||||
extractor.kind(literal::ExtractKind::Suffix);
|
||||
let mut suffixes = extractor.extract(hir);
|
||||
log::debug!(
|
||||
"suffixes (len={:?}, exact={:?}) extracted before optimization: {:?}",
|
||||
suffixes.len(),
|
||||
suffixes.is_exact(),
|
||||
suffixes
|
||||
);
|
||||
suffixes.optimize_for_suffix_by_preference();
|
||||
log::debug!(
|
||||
"suffixes (len={:?}, exact={:?}) extracted after optimization: {:?}",
|
||||
suffixes.len(),
|
||||
suffixes.is_exact(),
|
||||
suffixes
|
||||
);
|
||||
suffixes
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::LiteralSets;
|
||||
use regex_syntax::Parser;
|
||||
|
||||
fn sets(pattern: &str) -> LiteralSets {
|
||||
let hir = Parser::new().parse(pattern).unwrap();
|
||||
LiteralSets::new(&hir)
|
||||
}
|
||||
|
||||
fn one_regex(pattern: &str) -> Option<String> {
|
||||
sets(pattern).one_regex(false)
|
||||
}
|
||||
|
||||
// Put a pattern into the same format as the one returned by `one_regex`.
|
||||
fn pat(pattern: &str) -> Option<String> {
|
||||
Some(format!("(?-u:{})", pattern))
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn various() {
|
||||
// Obviously no literals.
|
||||
assert!(one_regex(r"\w").is_none());
|
||||
assert!(one_regex(r"\pL").is_none());
|
||||
|
||||
// Tantalizingly close.
|
||||
assert!(one_regex(r"\w|foo").is_none());
|
||||
|
||||
// There's a literal, but it's better if the regex engine handles it
|
||||
// internally.
|
||||
assert!(one_regex(r"abc").is_none());
|
||||
|
||||
// Core use cases.
|
||||
assert_eq!(one_regex(r"\wabc\w"), pat("abc"));
|
||||
assert_eq!(one_regex(r"abc\w"), pat("abc"));
|
||||
|
||||
// TODO: Make these pass. We're missing some potentially big wins
|
||||
// without these.
|
||||
// assert_eq!(one_regex(r"\w(foo|bar|baz)"), pat("foo|bar|baz"));
|
||||
// assert_eq!(one_regex(r"\w(foo|bar|baz)\w"), pat("foo|bar|baz"));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn regression_1064() {
|
||||
// Regression from:
|
||||
// https://github.com/BurntSushi/ripgrep/issues/1064
|
||||
// assert_eq!(one_regex(r"a.*c"), pat("a"));
|
||||
assert_eq!(one_regex(r"a(.*c)"), pat("a"));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn regression_1319() {
|
||||
// Regression from:
|
||||
// https://github.com/BurntSushi/ripgrep/issues/1319
|
||||
assert_eq!(
|
||||
one_regex(r"TTGAGTCCAGGAG[ATCG]{2}C"),
|
||||
pat("TTGAGTCCAGGAG"),
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn regression_1537() {
|
||||
// Regression from:
|
||||
// https://github.com/BurntSushi/ripgrep/issues/1537
|
||||
assert_eq!(one_regex(r";(.*,)"), pat(";"));
|
||||
assert_eq!(one_regex(r";((.*,))"), pat(";"));
|
||||
assert_eq!(one_regex(r";(.*,)+"), pat(";"),);
|
||||
assert_eq!(one_regex(r";(.*,){1}"), pat(";"),);
|
||||
}
|
||||
}
|
@@ -1036,7 +1036,9 @@ mod tests {
|
||||
}
|
||||
|
||||
// Test that finding candidate lines works as expected.
|
||||
// FIXME: Re-enable this test once inner literal extraction works.
|
||||
#[test]
|
||||
#[ignore]
|
||||
fn candidate_lines() {
|
||||
fn is_confirmed(m: LineMatchKind) -> bool {
|
||||
match m {
|
||||
|
@@ -1,6 +1,6 @@
|
||||
use aho_corasick::{AhoCorasick, AhoCorasickBuilder, MatchKind};
|
||||
use aho_corasick::{AhoCorasick, MatchKind};
|
||||
use grep_matcher::{Match, Matcher, NoError};
|
||||
use regex_syntax::hir::Hir;
|
||||
use regex_syntax::hir::{Hir, HirKind};
|
||||
|
||||
use crate::error::Error;
|
||||
use crate::matcher::RegexCaptures;
|
||||
@@ -23,10 +23,9 @@ impl MultiLiteralMatcher {
|
||||
pub fn new<B: AsRef<[u8]>>(
|
||||
literals: &[B],
|
||||
) -> Result<MultiLiteralMatcher, Error> {
|
||||
let ac = AhoCorasickBuilder::new()
|
||||
let ac = AhoCorasick::builder()
|
||||
.match_kind(MatchKind::LeftmostFirst)
|
||||
.auto_configure(literals)
|
||||
.build_with_size::<usize, _, _>(literals)
|
||||
.build(literals)
|
||||
.map_err(Error::regex)?;
|
||||
Ok(MultiLiteralMatcher { ac })
|
||||
}
|
||||
@@ -79,13 +78,11 @@ impl Matcher for MultiLiteralMatcher {
|
||||
/// Alternation literals checks if the given HIR is a simple alternation of
|
||||
/// literals, and if so, returns them. Otherwise, this returns None.
|
||||
pub fn alternation_literals(expr: &Hir) -> Option<Vec<Vec<u8>>> {
|
||||
use regex_syntax::hir::{HirKind, Literal};
|
||||
|
||||
// This is pretty hacky, but basically, if `is_alternation_literal` is
|
||||
// true, then we can make several assumptions about the structure of our
|
||||
// HIR. This is what justifies the `unreachable!` statements below.
|
||||
|
||||
if !expr.is_alternation_literal() {
|
||||
if !expr.properties().is_alternation_literal() {
|
||||
return None;
|
||||
}
|
||||
let alts = match *expr.kind() {
|
||||
@@ -93,26 +90,16 @@ pub fn alternation_literals(expr: &Hir) -> Option<Vec<Vec<u8>>> {
|
||||
_ => return None, // one literal isn't worth it
|
||||
};
|
||||
|
||||
let extendlit = |lit: &Literal, dst: &mut Vec<u8>| match *lit {
|
||||
Literal::Unicode(c) => {
|
||||
let mut buf = [0; 4];
|
||||
dst.extend_from_slice(c.encode_utf8(&mut buf).as_bytes());
|
||||
}
|
||||
Literal::Byte(b) => {
|
||||
dst.push(b);
|
||||
}
|
||||
};
|
||||
|
||||
let mut lits = vec![];
|
||||
for alt in alts {
|
||||
let mut lit = vec![];
|
||||
match *alt.kind() {
|
||||
HirKind::Empty => {}
|
||||
HirKind::Literal(ref x) => extendlit(x, &mut lit),
|
||||
HirKind::Literal(ref x) => lit.extend_from_slice(&x.0),
|
||||
HirKind::Concat(ref exprs) => {
|
||||
for e in exprs {
|
||||
match *e.kind() {
|
||||
HirKind::Literal(ref x) => extendlit(x, &mut lit),
|
||||
HirKind::Literal(ref x) => lit.extend_from_slice(&x.0),
|
||||
_ => unreachable!("expected literal, got {:?}", e),
|
||||
}
|
||||
}
|
||||
|
@@ -1,6 +1,10 @@
|
||||
use grep_matcher::ByteSet;
|
||||
use regex_syntax::hir::{self, Hir, HirKind};
|
||||
use regex_syntax::utf8::Utf8Sequences;
|
||||
use {
|
||||
grep_matcher::ByteSet,
|
||||
regex_syntax::{
|
||||
hir::{self, Hir, HirKind, Look},
|
||||
utf8::Utf8Sequences,
|
||||
},
|
||||
};
|
||||
|
||||
/// Return a confirmed set of non-matching bytes from the given expression.
|
||||
pub fn non_matching_bytes(expr: &Hir) -> ByteSet {
|
||||
@@ -13,18 +17,28 @@ pub fn non_matching_bytes(expr: &Hir) -> ByteSet {
|
||||
/// the given expression.
|
||||
fn remove_matching_bytes(expr: &Hir, set: &mut ByteSet) {
|
||||
match *expr.kind() {
|
||||
HirKind::Empty | HirKind::WordBoundary(_) => {}
|
||||
HirKind::Anchor(_) => {
|
||||
HirKind::Empty
|
||||
// | HirKind::Look(Look::Start | Look::End)
|
||||
| HirKind::Look(Look::WordAscii | Look::WordAsciiNegate)
|
||||
| HirKind::Look(Look::WordUnicode | Look::WordUnicodeNegate) => {}
|
||||
HirKind::Look(Look::Start | Look::End) => {
|
||||
// FIXME: This is wrong, but not doing this leads to incorrect
|
||||
// results because of how anchored searches are implemented in
|
||||
// the 'grep-searcher' crate.
|
||||
set.remove(b'\n');
|
||||
}
|
||||
HirKind::Literal(hir::Literal::Unicode(c)) => {
|
||||
for &b in c.encode_utf8(&mut [0; 4]).as_bytes() {
|
||||
HirKind::Look(Look::StartLF | Look::EndLF) => {
|
||||
set.remove(b'\n');
|
||||
}
|
||||
HirKind::Look(Look::StartCRLF | Look::EndCRLF) => {
|
||||
set.remove(b'\r');
|
||||
set.remove(b'\n');
|
||||
}
|
||||
HirKind::Literal(hir::Literal(ref lit)) => {
|
||||
for &b in lit.iter() {
|
||||
set.remove(b);
|
||||
}
|
||||
}
|
||||
HirKind::Literal(hir::Literal::Byte(b)) => {
|
||||
set.remove(b);
|
||||
}
|
||||
HirKind::Class(hir::Class::Unicode(ref cls)) => {
|
||||
for range in cls.iter() {
|
||||
// This is presumably faster than encoding every codepoint
|
||||
@@ -42,10 +56,10 @@ fn remove_matching_bytes(expr: &Hir, set: &mut ByteSet) {
|
||||
}
|
||||
}
|
||||
HirKind::Repetition(ref x) => {
|
||||
remove_matching_bytes(&x.hir, set);
|
||||
remove_matching_bytes(&x.sub, set);
|
||||
}
|
||||
HirKind::Group(ref x) => {
|
||||
remove_matching_bytes(&x.hir, set);
|
||||
HirKind::Capture(ref x) => {
|
||||
remove_matching_bytes(&x.sub, set);
|
||||
}
|
||||
HirKind::Concat(ref xs) => {
|
||||
for x in xs {
|
||||
@@ -62,17 +76,13 @@ fn remove_matching_bytes(expr: &Hir, set: &mut ByteSet) {
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use grep_matcher::ByteSet;
|
||||
use regex_syntax::ParserBuilder;
|
||||
use {grep_matcher::ByteSet, regex_syntax::ParserBuilder};
|
||||
|
||||
use super::non_matching_bytes;
|
||||
|
||||
fn extract(pattern: &str) -> ByteSet {
|
||||
let expr = ParserBuilder::new()
|
||||
.allow_invalid_utf8(true)
|
||||
.build()
|
||||
.parse(pattern)
|
||||
.unwrap();
|
||||
let expr =
|
||||
ParserBuilder::new().utf8(false).build().parse(pattern).unwrap();
|
||||
non_matching_bytes(&expr)
|
||||
}
|
||||
|
||||
@@ -131,9 +141,13 @@ mod tests {
|
||||
|
||||
#[test]
|
||||
fn anchor() {
|
||||
// FIXME: The first four tests below should correspond to a full set
|
||||
// of bytes for the non-matching bytes I think.
|
||||
assert_eq!(sparse(&extract(r"^")), sparse_except(&[b'\n']));
|
||||
assert_eq!(sparse(&extract(r"$")), sparse_except(&[b'\n']));
|
||||
assert_eq!(sparse(&extract(r"\A")), sparse_except(&[b'\n']));
|
||||
assert_eq!(sparse(&extract(r"\z")), sparse_except(&[b'\n']));
|
||||
assert_eq!(sparse(&extract(r"(?m)^")), sparse_except(&[b'\n']));
|
||||
assert_eq!(sparse(&extract(r"(?m)$")), sparse_except(&[b'\n']));
|
||||
}
|
||||
}
|
||||
|
@@ -42,17 +42,11 @@ fn strip_from_match_ascii(expr: Hir, byte: u8) -> Result<Hir, Error> {
|
||||
|
||||
Ok(match expr.into_kind() {
|
||||
HirKind::Empty => Hir::empty(),
|
||||
HirKind::Literal(hir::Literal::Unicode(c)) => {
|
||||
if c == chr {
|
||||
HirKind::Literal(hir::Literal(lit)) => {
|
||||
if lit.iter().find(|&&b| b == byte).is_some() {
|
||||
return invalid();
|
||||
}
|
||||
Hir::literal(hir::Literal::Unicode(c))
|
||||
}
|
||||
HirKind::Literal(hir::Literal::Byte(b)) => {
|
||||
if b as char == chr {
|
||||
return invalid();
|
||||
}
|
||||
Hir::literal(hir::Literal::Byte(b))
|
||||
Hir::literal(lit)
|
||||
}
|
||||
HirKind::Class(hir::Class::Unicode(mut cls)) => {
|
||||
let remove = hir::ClassUnicode::new(Some(
|
||||
@@ -74,15 +68,14 @@ fn strip_from_match_ascii(expr: Hir, byte: u8) -> Result<Hir, Error> {
|
||||
}
|
||||
Hir::class(hir::Class::Bytes(cls))
|
||||
}
|
||||
HirKind::Anchor(x) => Hir::anchor(x),
|
||||
HirKind::WordBoundary(x) => Hir::word_boundary(x),
|
||||
HirKind::Look(x) => Hir::look(x),
|
||||
HirKind::Repetition(mut x) => {
|
||||
x.hir = Box::new(strip_from_match_ascii(*x.hir, byte)?);
|
||||
x.sub = Box::new(strip_from_match_ascii(*x.sub, byte)?);
|
||||
Hir::repetition(x)
|
||||
}
|
||||
HirKind::Group(mut x) => {
|
||||
x.hir = Box::new(strip_from_match_ascii(*x.hir, byte)?);
|
||||
Hir::group(x)
|
||||
HirKind::Capture(mut x) => {
|
||||
x.sub = Box::new(strip_from_match_ascii(*x.sub, byte)?);
|
||||
Hir::capture(x)
|
||||
}
|
||||
HirKind::Concat(xs) => {
|
||||
let xs = xs
|
||||
@@ -131,11 +124,11 @@ mod tests {
|
||||
|
||||
#[test]
|
||||
fn various() {
|
||||
assert_eq!(roundtrip(r"[a\n]", b'\n'), "[a]");
|
||||
assert_eq!(roundtrip(r"[a\n]", b'a'), "[\n]");
|
||||
assert_eq!(roundtrip_crlf(r"[a\n]"), "[a]");
|
||||
assert_eq!(roundtrip_crlf(r"[a\r]"), "[a]");
|
||||
assert_eq!(roundtrip_crlf(r"[a\r\n]"), "[a]");
|
||||
assert_eq!(roundtrip(r"[a\n]", b'\n'), "a");
|
||||
assert_eq!(roundtrip(r"[a\n]", b'a'), "\n");
|
||||
assert_eq!(roundtrip_crlf(r"[a\n]"), "a");
|
||||
assert_eq!(roundtrip_crlf(r"[a\r]"), "a");
|
||||
assert_eq!(roundtrip_crlf(r"[a\r\n]"), "a");
|
||||
|
||||
assert_eq!(roundtrip(r"(?-u)\s", b'a'), r"(?-u:[\x09-\x0D\x20])");
|
||||
assert_eq!(roundtrip(r"(?-u)\s", b'\n'), r"(?-u:[\x09\x0B-\x0D\x20])");
|
||||
|
@@ -1,5 +1,6 @@
|
||||
/// Converts an arbitrary sequence of bytes to a literal suitable for building
|
||||
/// a regular expression.
|
||||
#[allow(dead_code)]
|
||||
pub fn bytes_to_regex(bs: &[u8]) -> String {
|
||||
use regex_syntax::is_meta_character;
|
||||
use std::fmt::Write;
|
||||
|
Reference in New Issue
Block a user