libripgrep: initial commit introducing libripgrep

libripgrep is not any one library, but rather, a collection of libraries
that roughly separate the following key distinct phases in a grep
implementation:

  1. Pattern matching (e.g., by a regex engine).
  2. Searching a file using a pattern matcher.
  3. Printing results.

Ultimately, both (1) and (3) are defined by de-coupled interfaces, of
which there may be multiple implementations. Namely, (1) is satisfied by
the `Matcher` trait in the `grep-matcher` crate and (3) is satisfied by
the `Sink` trait in the `grep2` crate. The searcher (2) ties everything
together and finds results using a matcher and reports those results
using a `Sink` implementation.
This commit is contained in:
Andrew Gallant 2018-04-29 09:29:52 -04:00
parent 545db65cbc
commit 4bce2dff5d
No known key found for this signature in database
GPG Key ID: B2E3A4923F8B0D44
61 changed files with 17096 additions and 1 deletions

157
Cargo.lock generated
View File

@ -24,6 +24,15 @@ dependencies = [
"winapi 0.3.5 (registry+https://github.com/rust-lang/crates.io-index)", "winapi 0.3.5 (registry+https://github.com/rust-lang/crates.io-index)",
] ]
[[package]]
name = "base64"
version = "0.9.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
dependencies = [
"byteorder 1.2.3 (registry+https://github.com/rust-lang/crates.io-index)",
"safemem 0.2.0 (registry+https://github.com/rust-lang/crates.io-index)",
]
[[package]] [[package]]
name = "bitflags" name = "bitflags"
version = "1.0.3" version = "1.0.3"
@ -37,6 +46,11 @@ dependencies = [
"simd 0.2.2 (registry+https://github.com/rust-lang/crates.io-index)", "simd 0.2.2 (registry+https://github.com/rust-lang/crates.io-index)",
] ]
[[package]]
name = "byteorder"
version = "1.2.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
[[package]] [[package]]
name = "cfg-if" name = "cfg-if"
version = "0.1.4" version = "0.1.4"
@ -60,6 +74,11 @@ name = "crossbeam"
version = "0.3.2" version = "0.3.2"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
[[package]]
name = "dtoa"
version = "0.4.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
[[package]] [[package]]
name = "encoding_rs" name = "encoding_rs"
version = "0.8.4" version = "0.8.4"
@ -123,6 +142,66 @@ dependencies = [
"regex-syntax 0.6.2 (registry+https://github.com/rust-lang/crates.io-index)", "regex-syntax 0.6.2 (registry+https://github.com/rust-lang/crates.io-index)",
] ]
[[package]]
name = "grep-matcher"
version = "0.0.1"
dependencies = [
"memchr 2.0.1 (registry+https://github.com/rust-lang/crates.io-index)",
"regex 1.0.2 (registry+https://github.com/rust-lang/crates.io-index)",
]
[[package]]
name = "grep-printer"
version = "0.0.1"
dependencies = [
"base64 0.9.2 (registry+https://github.com/rust-lang/crates.io-index)",
"grep-matcher 0.0.1",
"grep-regex 0.0.1",
"grep-searcher 0.0.1",
"log 0.4.3 (registry+https://github.com/rust-lang/crates.io-index)",
"serde 1.0.70 (registry+https://github.com/rust-lang/crates.io-index)",
"serde_derive 1.0.70 (registry+https://github.com/rust-lang/crates.io-index)",
"serde_json 1.0.24 (registry+https://github.com/rust-lang/crates.io-index)",
"termcolor 1.0.1 (registry+https://github.com/rust-lang/crates.io-index)",
]
[[package]]
name = "grep-regex"
version = "0.0.1"
dependencies = [
"grep-matcher 0.0.1",
"log 0.4.3 (registry+https://github.com/rust-lang/crates.io-index)",
"regex 1.0.2 (registry+https://github.com/rust-lang/crates.io-index)",
"regex-syntax 0.6.2 (registry+https://github.com/rust-lang/crates.io-index)",
"thread_local 0.3.5 (registry+https://github.com/rust-lang/crates.io-index)",
"utf8-ranges 1.0.0 (registry+https://github.com/rust-lang/crates.io-index)",
]
[[package]]
name = "grep-searcher"
version = "0.0.1"
dependencies = [
"bytecount 0.3.2 (registry+https://github.com/rust-lang/crates.io-index)",
"encoding_rs 0.8.4 (registry+https://github.com/rust-lang/crates.io-index)",
"encoding_rs_io 0.1.1 (registry+https://github.com/rust-lang/crates.io-index)",
"grep-matcher 0.0.1",
"grep-regex 0.0.1",
"log 0.4.3 (registry+https://github.com/rust-lang/crates.io-index)",
"memchr 2.0.1 (registry+https://github.com/rust-lang/crates.io-index)",
"memmap 0.6.2 (registry+https://github.com/rust-lang/crates.io-index)",
"regex 1.0.2 (registry+https://github.com/rust-lang/crates.io-index)",
]
[[package]]
name = "grep2"
version = "0.1.8"
dependencies = [
"grep-matcher 0.0.1",
"grep-printer 0.0.1",
"grep-regex 0.0.1",
"grep-searcher 0.0.1",
]
[[package]] [[package]]
name = "ignore" name = "ignore"
version = "0.4.3" version = "0.4.3"
@ -140,6 +219,11 @@ dependencies = [
"winapi 0.3.5 (registry+https://github.com/rust-lang/crates.io-index)", "winapi 0.3.5 (registry+https://github.com/rust-lang/crates.io-index)",
] ]
[[package]]
name = "itoa"
version = "0.4.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
[[package]] [[package]]
name = "lazy_static" name = "lazy_static"
version = "1.0.2" version = "1.0.2"
@ -183,6 +267,22 @@ dependencies = [
"libc 0.2.42 (registry+https://github.com/rust-lang/crates.io-index)", "libc 0.2.42 (registry+https://github.com/rust-lang/crates.io-index)",
] ]
[[package]]
name = "proc-macro2"
version = "0.4.9"
source = "registry+https://github.com/rust-lang/crates.io-index"
dependencies = [
"unicode-xid 0.1.0 (registry+https://github.com/rust-lang/crates.io-index)",
]
[[package]]
name = "quote"
version = "0.6.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
dependencies = [
"proc-macro2 0.4.9 (registry+https://github.com/rust-lang/crates.io-index)",
]
[[package]] [[package]]
name = "rand" name = "rand"
version = "0.4.2" version = "0.4.2"
@ -258,6 +358,11 @@ dependencies = [
"winapi 0.3.5 (registry+https://github.com/rust-lang/crates.io-index)", "winapi 0.3.5 (registry+https://github.com/rust-lang/crates.io-index)",
] ]
[[package]]
name = "safemem"
version = "0.2.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
[[package]] [[package]]
name = "same-file" name = "same-file"
version = "1.0.2" version = "1.0.2"
@ -266,6 +371,31 @@ dependencies = [
"winapi 0.3.5 (registry+https://github.com/rust-lang/crates.io-index)", "winapi 0.3.5 (registry+https://github.com/rust-lang/crates.io-index)",
] ]
[[package]]
name = "serde"
version = "1.0.70"
source = "registry+https://github.com/rust-lang/crates.io-index"
[[package]]
name = "serde_derive"
version = "1.0.70"
source = "registry+https://github.com/rust-lang/crates.io-index"
dependencies = [
"proc-macro2 0.4.9 (registry+https://github.com/rust-lang/crates.io-index)",
"quote 0.6.3 (registry+https://github.com/rust-lang/crates.io-index)",
"syn 0.14.4 (registry+https://github.com/rust-lang/crates.io-index)",
]
[[package]]
name = "serde_json"
version = "1.0.24"
source = "registry+https://github.com/rust-lang/crates.io-index"
dependencies = [
"dtoa 0.4.3 (registry+https://github.com/rust-lang/crates.io-index)",
"itoa 0.4.2 (registry+https://github.com/rust-lang/crates.io-index)",
"serde 1.0.70 (registry+https://github.com/rust-lang/crates.io-index)",
]
[[package]] [[package]]
name = "simd" name = "simd"
version = "0.2.2" version = "0.2.2"
@ -276,6 +406,16 @@ name = "strsim"
version = "0.7.0" version = "0.7.0"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
[[package]]
name = "syn"
version = "0.14.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
dependencies = [
"proc-macro2 0.4.9 (registry+https://github.com/rust-lang/crates.io-index)",
"quote 0.6.3 (registry+https://github.com/rust-lang/crates.io-index)",
"unicode-xid 0.1.0 (registry+https://github.com/rust-lang/crates.io-index)",
]
[[package]] [[package]]
name = "tempdir" name = "tempdir"
version = "0.3.7" version = "0.3.7"
@ -330,6 +470,11 @@ name = "unicode-width"
version = "0.1.5" version = "0.1.5"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
[[package]]
name = "unicode-xid"
version = "0.1.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
[[package]] [[package]]
name = "unreachable" name = "unreachable"
version = "1.0.0" version = "1.0.0"
@ -388,32 +533,43 @@ dependencies = [
"checksum aho-corasick 0.6.6 (registry+https://github.com/rust-lang/crates.io-index)" = "c1c6d463cbe7ed28720b5b489e7c083eeb8f90d08be2a0d6bb9e1ffea9ce1afa" "checksum aho-corasick 0.6.6 (registry+https://github.com/rust-lang/crates.io-index)" = "c1c6d463cbe7ed28720b5b489e7c083eeb8f90d08be2a0d6bb9e1ffea9ce1afa"
"checksum ansi_term 0.11.0 (registry+https://github.com/rust-lang/crates.io-index)" = "ee49baf6cb617b853aa8d93bf420db2383fab46d314482ca2803b40d5fde979b" "checksum ansi_term 0.11.0 (registry+https://github.com/rust-lang/crates.io-index)" = "ee49baf6cb617b853aa8d93bf420db2383fab46d314482ca2803b40d5fde979b"
"checksum atty 0.2.11 (registry+https://github.com/rust-lang/crates.io-index)" = "9a7d5b8723950951411ee34d271d99dddcc2035a16ab25310ea2c8cfd4369652" "checksum atty 0.2.11 (registry+https://github.com/rust-lang/crates.io-index)" = "9a7d5b8723950951411ee34d271d99dddcc2035a16ab25310ea2c8cfd4369652"
"checksum base64 0.9.2 (registry+https://github.com/rust-lang/crates.io-index)" = "85415d2594767338a74a30c1d370b2f3262ec1b4ed2d7bba5b3faf4de40467d9"
"checksum bitflags 1.0.3 (registry+https://github.com/rust-lang/crates.io-index)" = "d0c54bb8f454c567f21197eefcdbf5679d0bd99f2ddbe52e84c77061952e6789" "checksum bitflags 1.0.3 (registry+https://github.com/rust-lang/crates.io-index)" = "d0c54bb8f454c567f21197eefcdbf5679d0bd99f2ddbe52e84c77061952e6789"
"checksum bytecount 0.3.2 (registry+https://github.com/rust-lang/crates.io-index)" = "f861d9ce359f56dbcb6e0c2a1cb84e52ad732cadb57b806adeb3c7668caccbd8" "checksum bytecount 0.3.2 (registry+https://github.com/rust-lang/crates.io-index)" = "f861d9ce359f56dbcb6e0c2a1cb84e52ad732cadb57b806adeb3c7668caccbd8"
"checksum byteorder 1.2.3 (registry+https://github.com/rust-lang/crates.io-index)" = "74c0b906e9446b0a2e4f760cdb3fa4b2c48cdc6db8766a845c54b6ff063fd2e9"
"checksum cfg-if 0.1.4 (registry+https://github.com/rust-lang/crates.io-index)" = "efe5c877e17a9c717a0bf3613b2709f723202c4e4675cc8f12926ded29bcb17e" "checksum cfg-if 0.1.4 (registry+https://github.com/rust-lang/crates.io-index)" = "efe5c877e17a9c717a0bf3613b2709f723202c4e4675cc8f12926ded29bcb17e"
"checksum clap 2.32.0 (registry+https://github.com/rust-lang/crates.io-index)" = "b957d88f4b6a63b9d70d5f454ac8011819c6efa7727858f458ab71c756ce2d3e" "checksum clap 2.32.0 (registry+https://github.com/rust-lang/crates.io-index)" = "b957d88f4b6a63b9d70d5f454ac8011819c6efa7727858f458ab71c756ce2d3e"
"checksum crossbeam 0.3.2 (registry+https://github.com/rust-lang/crates.io-index)" = "24ce9782d4d5c53674646a6a4c1863a21a8fc0cb649b3c94dfc16e45071dea19" "checksum crossbeam 0.3.2 (registry+https://github.com/rust-lang/crates.io-index)" = "24ce9782d4d5c53674646a6a4c1863a21a8fc0cb649b3c94dfc16e45071dea19"
"checksum dtoa 0.4.3 (registry+https://github.com/rust-lang/crates.io-index)" = "6d301140eb411af13d3115f9a562c85cc6b541ade9dfa314132244aaee7489dd"
"checksum encoding_rs 0.8.4 (registry+https://github.com/rust-lang/crates.io-index)" = "88a1b66a0d28af4b03a8c8278c6dcb90e6e600d89c14500a9e7a02e64b9ee3ac" "checksum encoding_rs 0.8.4 (registry+https://github.com/rust-lang/crates.io-index)" = "88a1b66a0d28af4b03a8c8278c6dcb90e6e600d89c14500a9e7a02e64b9ee3ac"
"checksum encoding_rs_io 0.1.1 (registry+https://github.com/rust-lang/crates.io-index)" = "ad0ffe753ba194ef1bc070e8d61edaadb1536c05e364fc9178ca6cbde10922c4" "checksum encoding_rs_io 0.1.1 (registry+https://github.com/rust-lang/crates.io-index)" = "ad0ffe753ba194ef1bc070e8d61edaadb1536c05e364fc9178ca6cbde10922c4"
"checksum fnv 1.0.6 (registry+https://github.com/rust-lang/crates.io-index)" = "2fad85553e09a6f881f739c29f0b00b0f01357c743266d478b68951ce23285f3" "checksum fnv 1.0.6 (registry+https://github.com/rust-lang/crates.io-index)" = "2fad85553e09a6f881f739c29f0b00b0f01357c743266d478b68951ce23285f3"
"checksum fuchsia-zircon 0.3.3 (registry+https://github.com/rust-lang/crates.io-index)" = "2e9763c69ebaae630ba35f74888db465e49e259ba1bc0eda7d06f4a067615d82" "checksum fuchsia-zircon 0.3.3 (registry+https://github.com/rust-lang/crates.io-index)" = "2e9763c69ebaae630ba35f74888db465e49e259ba1bc0eda7d06f4a067615d82"
"checksum fuchsia-zircon-sys 0.3.3 (registry+https://github.com/rust-lang/crates.io-index)" = "3dcaa9ae7725d12cdb85b3ad99a434db70b468c09ded17e012d86b5c1010f7a7" "checksum fuchsia-zircon-sys 0.3.3 (registry+https://github.com/rust-lang/crates.io-index)" = "3dcaa9ae7725d12cdb85b3ad99a434db70b468c09ded17e012d86b5c1010f7a7"
"checksum glob 0.2.11 (registry+https://github.com/rust-lang/crates.io-index)" = "8be18de09a56b60ed0edf84bc9df007e30040691af7acd1c41874faac5895bfb" "checksum glob 0.2.11 (registry+https://github.com/rust-lang/crates.io-index)" = "8be18de09a56b60ed0edf84bc9df007e30040691af7acd1c41874faac5895bfb"
"checksum itoa 0.4.2 (registry+https://github.com/rust-lang/crates.io-index)" = "5adb58558dcd1d786b5f0bd15f3226ee23486e24b7b58304b60f64dc68e62606"
"checksum lazy_static 1.0.2 (registry+https://github.com/rust-lang/crates.io-index)" = "fb497c35d362b6a331cfd94956a07fc2c78a4604cdbee844a81170386b996dd3" "checksum lazy_static 1.0.2 (registry+https://github.com/rust-lang/crates.io-index)" = "fb497c35d362b6a331cfd94956a07fc2c78a4604cdbee844a81170386b996dd3"
"checksum libc 0.2.42 (registry+https://github.com/rust-lang/crates.io-index)" = "b685088df2b950fccadf07a7187c8ef846a959c142338a48f9dc0b94517eb5f1" "checksum libc 0.2.42 (registry+https://github.com/rust-lang/crates.io-index)" = "b685088df2b950fccadf07a7187c8ef846a959c142338a48f9dc0b94517eb5f1"
"checksum log 0.4.3 (registry+https://github.com/rust-lang/crates.io-index)" = "61bd98ae7f7b754bc53dca7d44b604f733c6bba044ea6f41bc8d89272d8161d2" "checksum log 0.4.3 (registry+https://github.com/rust-lang/crates.io-index)" = "61bd98ae7f7b754bc53dca7d44b604f733c6bba044ea6f41bc8d89272d8161d2"
"checksum memchr 2.0.1 (registry+https://github.com/rust-lang/crates.io-index)" = "796fba70e76612589ed2ce7f45282f5af869e0fdd7cc6199fa1aa1f1d591ba9d" "checksum memchr 2.0.1 (registry+https://github.com/rust-lang/crates.io-index)" = "796fba70e76612589ed2ce7f45282f5af869e0fdd7cc6199fa1aa1f1d591ba9d"
"checksum memmap 0.6.2 (registry+https://github.com/rust-lang/crates.io-index)" = "e2ffa2c986de11a9df78620c01eeaaf27d94d3ff02bf81bfcca953102dd0c6ff" "checksum memmap 0.6.2 (registry+https://github.com/rust-lang/crates.io-index)" = "e2ffa2c986de11a9df78620c01eeaaf27d94d3ff02bf81bfcca953102dd0c6ff"
"checksum num_cpus 1.8.0 (registry+https://github.com/rust-lang/crates.io-index)" = "c51a3322e4bca9d212ad9a158a02abc6934d005490c054a2778df73a70aa0a30" "checksum num_cpus 1.8.0 (registry+https://github.com/rust-lang/crates.io-index)" = "c51a3322e4bca9d212ad9a158a02abc6934d005490c054a2778df73a70aa0a30"
"checksum proc-macro2 0.4.9 (registry+https://github.com/rust-lang/crates.io-index)" = "cccdc7557a98fe98453030f077df7f3a042052fae465bb61d2c2c41435cfd9b6"
"checksum quote 0.6.3 (registry+https://github.com/rust-lang/crates.io-index)" = "e44651a0dc4cdd99f71c83b561e221f714912d11af1a4dff0631f923d53af035"
"checksum rand 0.4.2 (registry+https://github.com/rust-lang/crates.io-index)" = "eba5f8cb59cc50ed56be8880a5c7b496bfd9bd26394e176bc67884094145c2c5" "checksum rand 0.4.2 (registry+https://github.com/rust-lang/crates.io-index)" = "eba5f8cb59cc50ed56be8880a5c7b496bfd9bd26394e176bc67884094145c2c5"
"checksum redox_syscall 0.1.40 (registry+https://github.com/rust-lang/crates.io-index)" = "c214e91d3ecf43e9a4e41e578973adeb14b474f2bee858742d127af75a0112b1" "checksum redox_syscall 0.1.40 (registry+https://github.com/rust-lang/crates.io-index)" = "c214e91d3ecf43e9a4e41e578973adeb14b474f2bee858742d127af75a0112b1"
"checksum redox_termios 0.1.1 (registry+https://github.com/rust-lang/crates.io-index)" = "7e891cfe48e9100a70a3b6eb652fef28920c117d366339687bd5576160db0f76" "checksum redox_termios 0.1.1 (registry+https://github.com/rust-lang/crates.io-index)" = "7e891cfe48e9100a70a3b6eb652fef28920c117d366339687bd5576160db0f76"
"checksum regex 1.0.2 (registry+https://github.com/rust-lang/crates.io-index)" = "5bbbea44c5490a1e84357ff28b7d518b4619a159fed5d25f6c1de2d19cc42814" "checksum regex 1.0.2 (registry+https://github.com/rust-lang/crates.io-index)" = "5bbbea44c5490a1e84357ff28b7d518b4619a159fed5d25f6c1de2d19cc42814"
"checksum regex-syntax 0.6.2 (registry+https://github.com/rust-lang/crates.io-index)" = "747ba3b235651f6e2f67dfa8bcdcd073ddb7c243cb21c442fc12395dfcac212d" "checksum regex-syntax 0.6.2 (registry+https://github.com/rust-lang/crates.io-index)" = "747ba3b235651f6e2f67dfa8bcdcd073ddb7c243cb21c442fc12395dfcac212d"
"checksum remove_dir_all 0.5.1 (registry+https://github.com/rust-lang/crates.io-index)" = "3488ba1b9a2084d38645c4c08276a1752dcbf2c7130d74f1569681ad5d2799c5" "checksum remove_dir_all 0.5.1 (registry+https://github.com/rust-lang/crates.io-index)" = "3488ba1b9a2084d38645c4c08276a1752dcbf2c7130d74f1569681ad5d2799c5"
"checksum safemem 0.2.0 (registry+https://github.com/rust-lang/crates.io-index)" = "e27a8b19b835f7aea908818e871f5cc3a5a186550c30773be987e155e8163d8f"
"checksum same-file 1.0.2 (registry+https://github.com/rust-lang/crates.io-index)" = "cfb6eded0b06a0b512c8ddbcf04089138c9b4362c2f696f3c3d76039d68f3637" "checksum same-file 1.0.2 (registry+https://github.com/rust-lang/crates.io-index)" = "cfb6eded0b06a0b512c8ddbcf04089138c9b4362c2f696f3c3d76039d68f3637"
"checksum serde 1.0.70 (registry+https://github.com/rust-lang/crates.io-index)" = "0c3adf19c07af6d186d91dae8927b83b0553d07ca56cbf7f2f32560455c91920"
"checksum serde_derive 1.0.70 (registry+https://github.com/rust-lang/crates.io-index)" = "3525a779832b08693031b8ecfb0de81cd71cfd3812088fafe9a7496789572124"
"checksum serde_json 1.0.24 (registry+https://github.com/rust-lang/crates.io-index)" = "c3c6908c7b925cd6c590358a4034de93dbddb20c45e1d021931459fd419bf0e2"
"checksum simd 0.2.2 (registry+https://github.com/rust-lang/crates.io-index)" = "ed3686dd9418ebcc3a26a0c0ae56deab0681e53fe899af91f5bbcee667ebffb1" "checksum simd 0.2.2 (registry+https://github.com/rust-lang/crates.io-index)" = "ed3686dd9418ebcc3a26a0c0ae56deab0681e53fe899af91f5bbcee667ebffb1"
"checksum strsim 0.7.0 (registry+https://github.com/rust-lang/crates.io-index)" = "bb4f380125926a99e52bc279241539c018323fab05ad6368b56f93d9369ff550" "checksum strsim 0.7.0 (registry+https://github.com/rust-lang/crates.io-index)" = "bb4f380125926a99e52bc279241539c018323fab05ad6368b56f93d9369ff550"
"checksum syn 0.14.4 (registry+https://github.com/rust-lang/crates.io-index)" = "2beff8ebc3658f07512a413866875adddd20f4fd47b2a4e6c9da65cd281baaea"
"checksum tempdir 0.3.7 (registry+https://github.com/rust-lang/crates.io-index)" = "15f2b5fb00ccdf689e0149d1b1b3c03fead81c2b37735d812fa8bddbbf41b6d8" "checksum tempdir 0.3.7 (registry+https://github.com/rust-lang/crates.io-index)" = "15f2b5fb00ccdf689e0149d1b1b3c03fead81c2b37735d812fa8bddbbf41b6d8"
"checksum termcolor 1.0.1 (registry+https://github.com/rust-lang/crates.io-index)" = "722426c4a0539da2c4ffd9b419d90ad540b4cff4a053be9069c908d4d07e2836" "checksum termcolor 1.0.1 (registry+https://github.com/rust-lang/crates.io-index)" = "722426c4a0539da2c4ffd9b419d90ad540b4cff4a053be9069c908d4d07e2836"
"checksum termion 1.5.1 (registry+https://github.com/rust-lang/crates.io-index)" = "689a3bdfaab439fd92bc87df5c4c78417d3cbe537487274e9b0b2dce76e92096" "checksum termion 1.5.1 (registry+https://github.com/rust-lang/crates.io-index)" = "689a3bdfaab439fd92bc87df5c4c78417d3cbe537487274e9b0b2dce76e92096"
@ -421,6 +577,7 @@ dependencies = [
"checksum thread_local 0.3.5 (registry+https://github.com/rust-lang/crates.io-index)" = "279ef31c19ededf577bfd12dfae728040a21f635b06a24cd670ff510edd38963" "checksum thread_local 0.3.5 (registry+https://github.com/rust-lang/crates.io-index)" = "279ef31c19ededf577bfd12dfae728040a21f635b06a24cd670ff510edd38963"
"checksum ucd-util 0.1.1 (registry+https://github.com/rust-lang/crates.io-index)" = "fd2be2d6639d0f8fe6cdda291ad456e23629558d466e2789d2c3e9892bda285d" "checksum ucd-util 0.1.1 (registry+https://github.com/rust-lang/crates.io-index)" = "fd2be2d6639d0f8fe6cdda291ad456e23629558d466e2789d2c3e9892bda285d"
"checksum unicode-width 0.1.5 (registry+https://github.com/rust-lang/crates.io-index)" = "882386231c45df4700b275c7ff55b6f3698780a650026380e72dabe76fa46526" "checksum unicode-width 0.1.5 (registry+https://github.com/rust-lang/crates.io-index)" = "882386231c45df4700b275c7ff55b6f3698780a650026380e72dabe76fa46526"
"checksum unicode-xid 0.1.0 (registry+https://github.com/rust-lang/crates.io-index)" = "fc72304796d0818e357ead4e000d19c9c174ab23dc11093ac919054d20a6a7fc"
"checksum unreachable 1.0.0 (registry+https://github.com/rust-lang/crates.io-index)" = "382810877fe448991dfc7f0dd6e3ae5d58088fd0ea5e35189655f84e6814fa56" "checksum unreachable 1.0.0 (registry+https://github.com/rust-lang/crates.io-index)" = "382810877fe448991dfc7f0dd6e3ae5d58088fd0ea5e35189655f84e6814fa56"
"checksum utf8-ranges 1.0.0 (registry+https://github.com/rust-lang/crates.io-index)" = "662fab6525a98beff2921d7f61a39e7d59e0b425ebc7d0d9e66d316e55124122" "checksum utf8-ranges 1.0.0 (registry+https://github.com/rust-lang/crates.io-index)" = "662fab6525a98beff2921d7f61a39e7d59e0b425ebc7d0d9e66d316e55124122"
"checksum void 1.0.2 (registry+https://github.com/rust-lang/crates.io-index)" = "6a02e4885ed3bc0f2de90ea6dd45ebcbb66dacffe03547fadbb0eeae2770887d" "checksum void 1.0.2 (registry+https://github.com/rust-lang/crates.io-index)" = "6a02e4885ed3bc0f2de90ea6dd45ebcbb66dacffe03547fadbb0eeae2770887d"

View File

@ -32,7 +32,11 @@ name = "integration"
path = "tests/tests.rs" path = "tests/tests.rs"
[workspace] [workspace]
members = ["grep", "globset", "ignore"] members = [
"grep", "globset", "ignore",
"grep-matcher", "grep-printer", "grep-regex", "grep-searcher",
"grep2",
]
[dependencies] [dependencies]
atty = "0.2.11" atty = "0.2.11"
@ -72,10 +76,12 @@ features = ["suggestions", "color"]
[features] [features]
avx-accel = [ avx-accel = [
"bytecount/avx-accel", "bytecount/avx-accel",
"grep2/avx-accel",
] ]
simd-accel = [ simd-accel = [
"bytecount/simd-accel", "bytecount/simd-accel",
"encoding_rs/simd-accel", "encoding_rs/simd-accel",
"grep2/simd-accel",
] ]
[profile.release] [profile.release]

24
grep-matcher/Cargo.toml Normal file
View File

@ -0,0 +1,24 @@
[package]
name = "grep-matcher"
version = "0.0.1" #:version
authors = ["Andrew Gallant <jamslam@gmail.com>"]
description = """
A trait for regular expressions, with a focus on line oriented search.
"""
documentation = "https://docs.rs/grep-matcher"
homepage = "https://github.com/BurntSushi/ripgrep"
repository = "https://github.com/BurntSushi/ripgrep"
readme = "README.md"
keywords = ["regex", "pattern", "trait"]
license = "Unlicense/MIT"
autotests = false
[dependencies]
memchr = "2"
[dev-dependencies]
regex = "1"
[[test]]
name = "integration"
path = "tests/tests.rs"

21
grep-matcher/LICENSE-MIT Normal file
View File

@ -0,0 +1,21 @@
The MIT License (MIT)
Copyright (c) 2015 Andrew Gallant
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

4
grep-matcher/README.md Normal file
View File

@ -0,0 +1,4 @@
grep
----
This is a *library* that provides grep-style line-by-line regex searching (with
comparable performance to `grep` itself).

24
grep-matcher/UNLICENSE Normal file
View File

@ -0,0 +1,24 @@
This is free and unencumbered software released into the public domain.
Anyone is free to copy, modify, publish, use, compile, sell, or
distribute this software, either in source code form or as a compiled
binary, for any purpose, commercial or non-commercial, and by any
means.
In jurisdictions that recognize copyright laws, the author or authors
of this software dedicate any and all copyright interest in the
software to the public domain. We make this dedication for the benefit
of the public at large and to the detriment of our heirs and
successors. We intend this dedication to be an overt act of
relinquishment in perpetuity of all present and future rights to this
software under copyright law.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
For more information, please refer to <http://unlicense.org/>

View File

@ -0,0 +1,328 @@
use std::str;
use memchr::memchr;
/// Interpolate capture references in `replacement` and write the interpolation
/// result to `dst`. References in `replacement` take the form of $N or $name,
/// where `N` is a capture group index and `name` is a capture group name. The
/// function provided, `name_to_index`, maps capture group names to indices.
///
/// The `append` function given is responsible for writing the replacement
/// to the `dst` buffer. That is, it is called with the capture group index
/// of a capture group reference and is expected to resolve the index to its
/// corresponding matched text. If no such match exists, then `append` should
/// not write anything to its given buffer.
pub fn interpolate<A, N>(
mut replacement: &[u8],
mut append: A,
mut name_to_index: N,
dst: &mut Vec<u8>,
) where
A: FnMut(usize, &mut Vec<u8>),
N: FnMut(&str) -> Option<usize>
{
while !replacement.is_empty() {
match memchr(b'$', replacement) {
None => break,
Some(i) => {
dst.extend(&replacement[..i]);
replacement = &replacement[i..];
}
}
if replacement.get(1).map_or(false, |&b| b == b'$') {
dst.push(b'$');
replacement = &replacement[2..];
continue;
}
debug_assert!(!replacement.is_empty());
let cap_ref = match find_cap_ref(replacement) {
Some(cap_ref) => cap_ref,
None => {
dst.push(b'$');
replacement = &replacement[1..];
continue;
}
};
replacement = &replacement[cap_ref.end..];
match cap_ref.cap {
Ref::Number(i) => append(i, dst),
Ref::Named(name) => {
if let Some(i) = name_to_index(name) {
append(i, dst);
}
}
}
}
dst.extend(replacement);
}
/// `CaptureRef` represents a reference to a capture group inside some text.
/// The reference is either a capture group name or a number.
///
/// It is also tagged with the position in the text immediately proceding the
/// capture reference.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
struct CaptureRef<'a> {
cap: Ref<'a>,
end: usize,
}
/// A reference to a capture group in some text.
///
/// e.g., `$2`, `$foo`, `${foo}`.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
enum Ref<'a> {
Named(&'a str),
Number(usize),
}
impl<'a> From<&'a str> for Ref<'a> {
fn from(x: &'a str) -> Ref<'a> {
Ref::Named(x)
}
}
impl From<usize> for Ref<'static> {
fn from(x: usize) -> Ref<'static> {
Ref::Number(x)
}
}
/// Parses a possible reference to a capture group name in the given text,
/// starting at the beginning of `replacement`.
///
/// If no such valid reference could be found, None is returned.
fn find_cap_ref(replacement: &[u8]) -> Option<CaptureRef> {
let mut i = 0;
if replacement.len() <= 1 || replacement[0] != b'$' {
return None;
}
let mut brace = false;
i += 1;
if replacement[i] == b'{' {
brace = true;
i += 1;
}
let mut cap_end = i;
while replacement.get(cap_end).map_or(false, is_valid_cap_letter) {
cap_end += 1;
}
if cap_end == i {
return None;
}
// We just verified that the range 0..cap_end is valid ASCII, so it must
// therefore be valid UTF-8. If we really cared, we could avoid this UTF-8
// check with an unchecked conversion or by parsing the number straight
// from &[u8].
let cap = str::from_utf8(&replacement[i..cap_end])
.expect("valid UTF-8 capture name");
if brace {
if !replacement.get(cap_end).map_or(false, |&b| b == b'}') {
return None;
}
cap_end += 1;
}
Some(CaptureRef {
cap: match cap.parse::<u32>() {
Ok(i) => Ref::Number(i as usize),
Err(_) => Ref::Named(cap),
},
end: cap_end,
})
}
/// Returns true if and only if the given byte is allowed in a capture name.
fn is_valid_cap_letter(b: &u8) -> bool {
match *b {
b'0' ... b'9' | b'a' ... b'z' | b'A' ... b'Z' | b'_' => true,
_ => false,
}
}
#[cfg(test)]
mod tests {
use super::{CaptureRef, find_cap_ref, interpolate};
macro_rules! find {
($name:ident, $text:expr) => {
#[test]
fn $name() {
assert_eq!(None, find_cap_ref($text.as_bytes()));
}
};
($name:ident, $text:expr, $capref:expr) => {
#[test]
fn $name() {
assert_eq!(Some($capref), find_cap_ref($text.as_bytes()));
}
};
}
macro_rules! c {
($name_or_number:expr, $pos:expr) => {
CaptureRef { cap: $name_or_number.into(), end: $pos }
};
}
find!(find_cap_ref1, "$foo", c!("foo", 4));
find!(find_cap_ref2, "${foo}", c!("foo", 6));
find!(find_cap_ref3, "$0", c!(0, 2));
find!(find_cap_ref4, "$5", c!(5, 2));
find!(find_cap_ref5, "$10", c!(10, 3));
find!(find_cap_ref6, "$42a", c!("42a", 4));
find!(find_cap_ref7, "${42}a", c!(42, 5));
find!(find_cap_ref8, "${42");
find!(find_cap_ref9, "${42 ");
find!(find_cap_ref10, " $0 ");
find!(find_cap_ref11, "$");
find!(find_cap_ref12, " ");
find!(find_cap_ref13, "");
// A convenience routine for using interpolate's unwieldy but flexible API.
fn interpolate_string(
mut name_to_index: Vec<(&'static str, usize)>,
caps: Vec<&'static str>,
replacement: &str,
) -> String {
name_to_index.sort_by_key(|x| x.0);
let mut dst = vec![];
interpolate(
replacement.as_bytes(),
|i, dst| {
if let Some(&s) = caps.get(i) {
dst.extend(s.as_bytes());
}
},
|name| -> Option<usize> {
name_to_index
.binary_search_by_key(&name, |x| x.0)
.ok()
.map(|i| name_to_index[i].1)
},
&mut dst,
);
String::from_utf8(dst).unwrap()
}
macro_rules! interp {
($name:ident, $map:expr, $caps:expr, $hay:expr, $expected:expr $(,)*) => {
#[test]
fn $name() {
assert_eq!($expected, interpolate_string($map, $caps, $hay));
}
}
}
interp!(
interp1,
vec![("foo", 2)],
vec!["", "", "xxx"],
"test $foo test",
"test xxx test",
);
interp!(
interp2,
vec![("foo", 2)],
vec!["", "", "xxx"],
"test$footest",
"test",
);
interp!(
interp3,
vec![("foo", 2)],
vec!["", "", "xxx"],
"test${foo}test",
"testxxxtest",
);
interp!(
interp4,
vec![("foo", 2)],
vec!["", "", "xxx"],
"test$2test",
"test",
);
interp!(
interp5,
vec![("foo", 2)],
vec!["", "", "xxx"],
"test${2}test",
"testxxxtest",
);
interp!(
interp6,
vec![("foo", 2)],
vec!["", "", "xxx"],
"test $$foo test",
"test $foo test",
);
interp!(
interp7,
vec![("foo", 2)],
vec!["", "", "xxx"],
"test $foo",
"test xxx",
);
interp!(
interp8,
vec![("foo", 2)],
vec!["", "", "xxx"],
"$foo test",
"xxx test",
);
interp!(
interp9,
vec![("bar", 1), ("foo", 2)],
vec!["", "yyy", "xxx"],
"test $bar$foo",
"test yyyxxx",
);
interp!(
interp10,
vec![("bar", 1), ("foo", 2)],
vec!["", "yyy", "xxx"],
"test $ test",
"test $ test",
);
interp!(
interp11,
vec![("bar", 1), ("foo", 2)],
vec!["", "yyy", "xxx"],
"test ${} test",
"test ${} test",
);
interp!(
interp12,
vec![("bar", 1), ("foo", 2)],
vec!["", "yyy", "xxx"],
"test ${ } test",
"test ${ } test",
);
interp!(
interp13,
vec![("bar", 1), ("foo", 2)],
vec!["", "yyy", "xxx"],
"test ${a b} test",
"test ${a b} test",
);
interp!(
interp14,
vec![("bar", 1), ("foo", 2)],
vec!["", "yyy", "xxx"],
"test ${a} test",
"test test",
);
}

1072
grep-matcher/src/lib.rs Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,208 @@
use grep_matcher::{Captures, Match, Matcher};
use regex::bytes::Regex;
use util::{RegexMatcher, RegexMatcherNoCaps};
fn matcher(pattern: &str) -> RegexMatcher {
RegexMatcher::new(Regex::new(pattern).unwrap())
}
fn matcher_no_caps(pattern: &str) -> RegexMatcherNoCaps {
RegexMatcherNoCaps(Regex::new(pattern).unwrap())
}
fn m(start: usize, end: usize) -> Match {
Match::new(start, end)
}
#[test]
fn find() {
let matcher = matcher(r"(\w+)\s+(\w+)");
assert_eq!(matcher.find(b" homer simpson ").unwrap(), Some(m(1, 14)));
}
#[test]
fn find_iter() {
let matcher = matcher(r"(\w+)\s+(\w+)");
let mut matches = vec![];
matcher.find_iter(b"aa bb cc dd", |m| {
matches.push(m);
true
}).unwrap();
assert_eq!(matches, vec![m(0, 5), m(6, 11)]);
// Test that find_iter respects short circuiting.
matches.clear();
matcher.find_iter(b"aa bb cc dd", |m| {
matches.push(m);
false
}).unwrap();
assert_eq!(matches, vec![m(0, 5)]);
}
#[test]
fn try_find_iter() {
#[derive(Clone, Debug, Eq, PartialEq)]
struct MyError;
let matcher = matcher(r"(\w+)\s+(\w+)");
let mut matches = vec![];
let err = matcher.try_find_iter(b"aa bb cc dd", |m| {
if matches.is_empty() {
matches.push(m);
Ok(true)
} else {
Err(MyError)
}
}).unwrap().unwrap_err();
assert_eq!(matches, vec![m(0, 5)]);
assert_eq!(err, MyError);
}
#[test]
fn shortest_match() {
let matcher = matcher(r"a+");
// This tests that the default impl isn't doing anything smart, and simply
// defers to `find`.
assert_eq!(matcher.shortest_match(b"aaa").unwrap(), Some(3));
// The actual underlying regex is smarter.
assert_eq!(matcher.re.shortest_match(b"aaa"), Some(1));
}
#[test]
fn captures() {
let matcher = matcher(r"(?P<a>\w+)\s+(?P<b>\w+)");
assert_eq!(matcher.capture_count(), 3);
assert_eq!(matcher.capture_index("a"), Some(1));
assert_eq!(matcher.capture_index("b"), Some(2));
assert_eq!(matcher.capture_index("nada"), None);
let mut caps = matcher.new_captures().unwrap();
assert!(matcher.captures(b" homer simpson ", &mut caps).unwrap());
assert_eq!(caps.get(0), Some(m(1, 14)));
assert_eq!(caps.get(1), Some(m(1, 6)));
assert_eq!(caps.get(2), Some(m(7, 14)));
}
#[test]
fn captures_iter() {
let matcher = matcher(r"(?P<a>\w+)\s+(?P<b>\w+)");
let mut caps = matcher.new_captures().unwrap();
let mut matches = vec![];
matcher.captures_iter(b"aa bb cc dd", &mut caps, |caps| {
matches.push(caps.get(0).unwrap());
matches.push(caps.get(1).unwrap());
matches.push(caps.get(2).unwrap());
true
}).unwrap();
assert_eq!(matches, vec![
m(0, 5), m(0, 2), m(3, 5),
m(6, 11), m(6, 8), m(9, 11),
]);
// Test that captures_iter respects short circuiting.
matches.clear();
matcher.captures_iter(b"aa bb cc dd", &mut caps, |caps| {
matches.push(caps.get(0).unwrap());
matches.push(caps.get(1).unwrap());
matches.push(caps.get(2).unwrap());
false
}).unwrap();
assert_eq!(matches, vec![
m(0, 5), m(0, 2), m(3, 5),
]);
}
#[test]
fn try_captures_iter() {
#[derive(Clone, Debug, Eq, PartialEq)]
struct MyError;
let matcher = matcher(r"(?P<a>\w+)\s+(?P<b>\w+)");
let mut caps = matcher.new_captures().unwrap();
let mut matches = vec![];
let err = matcher.try_captures_iter(b"aa bb cc dd", &mut caps, |caps| {
if matches.is_empty() {
matches.push(caps.get(0).unwrap());
matches.push(caps.get(1).unwrap());
matches.push(caps.get(2).unwrap());
Ok(true)
} else {
Err(MyError)
}
}).unwrap().unwrap_err();
assert_eq!(matches, vec![m(0, 5), m(0, 2), m(3, 5)]);
assert_eq!(err, MyError);
}
// Test that our default impls for capturing are correct. Namely, when
// capturing isn't supported by the underlying matcher, then all of the
// various capturing related APIs fail fast.
#[test]
fn no_captures() {
let matcher = matcher_no_caps(r"(?P<a>\w+)\s+(?P<b>\w+)");
assert_eq!(matcher.capture_count(), 0);
assert_eq!(matcher.capture_index("a"), None);
assert_eq!(matcher.capture_index("b"), None);
assert_eq!(matcher.capture_index("nada"), None);
let mut caps = matcher.new_captures().unwrap();
assert!(!matcher.captures(b"homer simpson", &mut caps).unwrap());
let mut called = false;
matcher.captures_iter(b"homer simpson", &mut caps, |_| {
called = true;
true
}).unwrap();
assert!(!called);
}
#[test]
fn replace() {
let matcher = matcher(r"(\w+)\s+(\w+)");
let mut dst = vec![];
matcher.replace(b"aa bb cc dd", &mut dst, |_, dst| {
dst.push(b'z');
true
}).unwrap();
assert_eq!(dst, b"z z");
// Test that replacements respect short circuiting.
dst.clear();
matcher.replace(b"aa bb cc dd", &mut dst, |_, dst| {
dst.push(b'z');
false
}).unwrap();
assert_eq!(dst, b"z cc dd");
}
#[test]
fn replace_with_captures() {
let matcher = matcher(r"(\w+)\s+(\w+)");
let haystack = b"aa bb cc dd";
let mut caps = matcher.new_captures().unwrap();
let mut dst = vec![];
matcher.replace_with_captures(haystack, &mut caps, &mut dst, |caps, dst| {
caps.interpolate(
|name| matcher.capture_index(name),
haystack,
b"$2 $1",
dst,
);
true
}).unwrap();
assert_eq!(dst, b"bb aa dd cc");
// Test that replacements respect short circuiting.
dst.clear();
matcher.replace_with_captures(haystack, &mut caps, &mut dst, |caps, dst| {
caps.interpolate(
|name| matcher.capture_index(name),
haystack,
b"$2 $1",
dst,
);
false
}).unwrap();
assert_eq!(dst, b"bb aa cc dd");
}

View File

@ -0,0 +1,6 @@
extern crate grep_matcher;
extern crate regex;
mod util;
mod test_matcher;

104
grep-matcher/tests/util.rs Normal file
View File

@ -0,0 +1,104 @@
use std::collections::HashMap;
use std::result;
use grep_matcher::{Captures, Match, Matcher, NoCaptures, NoError};
use regex::bytes::{CaptureLocations, Regex};
#[derive(Debug)]
pub struct RegexMatcher {
pub re: Regex,
pub names: HashMap<String, usize>,
}
impl RegexMatcher {
pub fn new(re: Regex) -> RegexMatcher {
let mut names = HashMap::new();
for (i, optional_name) in re.capture_names().enumerate() {
if let Some(name) = optional_name {
names.insert(name.to_string(), i);
}
}
RegexMatcher {
re: re,
names: names,
}
}
}
type Result<T> = result::Result<T, NoError>;
impl Matcher for RegexMatcher {
type Captures = RegexCaptures;
type Error = NoError;
fn find_at(
&self,
haystack: &[u8],
at: usize,
) -> Result<Option<Match>> {
Ok(self.re
.find_at(haystack, at)
.map(|m| Match::new(m.start(), m.end())))
}
fn new_captures(&self) -> Result<RegexCaptures> {
Ok(RegexCaptures(self.re.capture_locations()))
}
fn captures_at(
&self,
haystack: &[u8],
at: usize,
caps: &mut RegexCaptures,
) -> Result<bool> {
Ok(self.re.captures_read_at(&mut caps.0, haystack, at).is_some())
}
fn capture_count(&self) -> usize {
self.re.captures_len()
}
fn capture_index(&self, name: &str) -> Option<usize> {
self.names.get(name).map(|i| *i)
}
// We purposely don't implement any other methods, so that we test the
// default impls. The "real" Regex impl for Matcher provides a few more
// impls. e.g., Its `find_iter` impl is faster than what we can do here,
// since the regex crate avoids synchronization overhead.
}
#[derive(Debug)]
pub struct RegexMatcherNoCaps(pub Regex);
impl Matcher for RegexMatcherNoCaps {
type Captures = NoCaptures;
type Error = NoError;
fn find_at(
&self,
haystack: &[u8],
at: usize,
) -> Result<Option<Match>> {
Ok(self.0
.find_at(haystack, at)
.map(|m| Match::new(m.start(), m.end())))
}
fn new_captures(&self) -> Result<NoCaptures> {
Ok(NoCaptures::new())
}
}
#[derive(Clone, Debug)]
pub struct RegexCaptures(CaptureLocations);
impl Captures for RegexCaptures {
fn len(&self) -> usize {
self.0.len()
}
fn get(&self, i: usize) -> Option<Match> {
self.0.pos(i).map(|(s, e)| Match::new(s, e))
}
}

31
grep-printer/Cargo.toml Normal file
View File

@ -0,0 +1,31 @@
[package]
name = "grep-printer"
version = "0.0.1" #:version
authors = ["Andrew Gallant <jamslam@gmail.com>"]
description = """
An implementation of the grep crate's Sink trait that provides standard
printing of search results, similar to grep itself.
"""
documentation = "https://docs.rs/grep-printer"
homepage = "https://github.com/BurntSushi/ripgrep"
repository = "https://github.com/BurntSushi/ripgrep"
readme = "README.md"
keywords = ["grep", "pattern", "print", "printer", "sink"]
license = "Unlicense/MIT"
[features]
default = ["serde1"]
serde1 = ["base64", "serde", "serde_derive", "serde_json"]
[dependencies]
base64 = { version = "0.9", optional = true }
grep-matcher = { version = "0.0.1", path = "../grep-matcher" }
grep-searcher = { version = "0.0.1", path = "../grep-searcher" }
log = "0.4"
termcolor = "1"
serde = { version = "1", optional = true }
serde_derive = { version = "1", optional = true }
serde_json = { version = "1", optional = true }
[dev-dependencies]
grep-regex = { version = "0.0.1", path = "../grep-regex" }

21
grep-printer/LICENSE-MIT Normal file
View File

@ -0,0 +1,21 @@
The MIT License (MIT)
Copyright (c) 2015 Andrew Gallant
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

4
grep-printer/README.md Normal file
View File

@ -0,0 +1,4 @@
grep
----
This is a *library* that provides grep-style line-by-line regex searching (with
comparable performance to `grep` itself).

24
grep-printer/UNLICENSE Normal file
View File

@ -0,0 +1,24 @@
This is free and unencumbered software released into the public domain.
Anyone is free to copy, modify, publish, use, compile, sell, or
distribute this software, either in source code form or as a compiled
binary, for any purpose, commercial or non-commercial, and by any
means.
In jurisdictions that recognize copyright laws, the author or authors
of this software dedicate any and all copyright interest in the
software to the public domain. We make this dedication for the benefit
of the public at large and to the detriment of our heirs and
successors. We intend this dedication to be an overt act of
relinquishment in perpetuity of all present and future rights to this
software under copyright law.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
For more information, please refer to <http://unlicense.org/>

366
grep-printer/src/color.rs Normal file
View File

@ -0,0 +1,366 @@
use std::error;
use std::fmt;
use std::str::FromStr;
use termcolor::{Color, ColorSpec, ParseColorError};
/// An error that can occur when parsing color specifications.
#[derive(Clone, Debug, Eq, PartialEq)]
pub enum ColorError {
/// This occurs when an unrecognized output type is used.
UnrecognizedOutType(String),
/// This occurs when an unrecognized spec type is used.
UnrecognizedSpecType(String),
/// This occurs when an unrecognized color name is used.
UnrecognizedColor(String, String),
/// This occurs when an unrecognized style attribute is used.
UnrecognizedStyle(String),
/// This occurs when the format of a color specification is invalid.
InvalidFormat(String),
}
impl error::Error for ColorError {
fn description(&self) -> &str {
match *self {
ColorError::UnrecognizedOutType(_) => "unrecognized output type",
ColorError::UnrecognizedSpecType(_) => "unrecognized spec type",
ColorError::UnrecognizedColor(_, _) => "unrecognized color name",
ColorError::UnrecognizedStyle(_) => "unrecognized style attribute",
ColorError::InvalidFormat(_) => "invalid color spec",
}
}
}
impl ColorError {
fn from_parse_error(err: ParseColorError) -> ColorError {
ColorError::UnrecognizedColor(
err.invalid().to_string(),
err.to_string(),
)
}
}
impl fmt::Display for ColorError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
ColorError::UnrecognizedOutType(ref name) => {
write!(
f,
"unrecognized output type '{}'. Choose from: \
path, line, column, match.",
name,
)
}
ColorError::UnrecognizedSpecType(ref name) => {
write!(
f,
"unrecognized spec type '{}'. Choose from: \
fg, bg, style, none.",
name,
)
}
ColorError::UnrecognizedColor(_, ref msg) => {
write!(f, "{}", msg)
}
ColorError::UnrecognizedStyle(ref name) => {
write!(
f,
"unrecognized style attribute '{}'. Choose from: \
nobold, bold, nointense, intense, nounderline, \
underline.",
name,
)
}
ColorError::InvalidFormat(ref original) => {
write!(
f,
"invalid color spec format: '{}'. Valid format \
is '(path|line|column|match):(fg|bg|style):(value)'.",
original,
)
}
}
}
}
/// A merged set of color specifications.
///
/// This set of color specifications represents the various color types that
/// are supported by the printers in this crate. A set of color specifications
/// can be created from a sequence of
/// [`UserColorSpec`s](struct.UserColorSpec.html).
#[derive(Clone, Debug, Default, Eq, PartialEq)]
pub struct ColorSpecs {
path: ColorSpec,
line: ColorSpec,
column: ColorSpec,
matched: ColorSpec,
}
/// A single color specification provided by the user.
///
/// ## Format
///
/// The format of a `Spec` is a triple: `{type}:{attribute}:{value}`. Each
/// component is defined as follows:
///
/// * `{type}` can be one of `path`, `line`, `column` or `match`.
/// * `{attribute}` can be one of `fg`, `bg` or `style`. `{attribute}` may also
/// be the special value `none`, in which case, `{value}` can be omitted.
/// * `{value}` is either a color name (for `fg`/`bg`) or a style instruction.
///
/// `{type}` controls which part of the output should be styled.
///
/// When `{attribute}` is `none`, then this should cause any existing style
/// settings to be cleared for the specified `type`.
///
/// `{value}` should be a color when `{attribute}` is `fg` or `bg`, or it
/// should be a style instruction when `{attribute}` is `style`. When
/// `{attribute}` is `none`, `{value}` must be omitted.
///
/// Valid colors are `black`, `blue`, `green`, `red`, `cyan`, `magenta`,
/// `yellow`, `white`. Extended colors can also be specified, and are formatted
/// as `x` (for 256-bit colors) or `x,x,x` (for 24-bit true color), where
/// `x` is a number between 0 and 255 inclusive. `x` may be given as a normal
/// decimal number of a hexadecimal number, where the latter is prefixed by
/// `0x`.
///
/// Valid style instructions are `nobold`, `bold`, `intense`, `nointense`,
/// `underline`, `nounderline`.
///
/// ## Example
///
/// The standard way to build a `UserColorSpec` is to parse it from a string.
/// Once multiple `UserColorSpec`s have been constructed, they can be provided
/// to the standard printer where they will automatically be applied to the
/// output.
///
/// A `UserColorSpec` can also be converted to a `termcolor::ColorSpec`:
///
/// ```rust
/// extern crate grep_printer;
/// extern crate termcolor;
///
/// # fn main() {
/// use termcolor::{Color, ColorSpec};
/// use grep_printer::UserColorSpec;
///
/// let user_spec1: UserColorSpec = "path:fg:blue".parse().unwrap();
/// let user_spec2: UserColorSpec = "match:bg:0xff,0x7f,0x00".parse().unwrap();
///
/// let spec1 = user_spec1.to_color_spec();
/// let spec2 = user_spec2.to_color_spec();
///
/// assert_eq!(spec1.fg(), Some(&Color::Blue));
/// assert_eq!(spec2.bg(), Some(&Color::Rgb(0xFF, 0x7F, 0x00)));
/// # }
/// ```
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct UserColorSpec {
ty: OutType,
value: SpecValue,
}
impl UserColorSpec {
/// Convert this user provided color specification to a specification that
/// can be used with `termcolor`. This drops the type of this specification
/// (where the type indicates where the color is applied in the standard
/// printer, e.g., to the file path or the line numbers, etc.).
pub fn to_color_spec(&self) -> ColorSpec {
let mut spec = ColorSpec::default();
self.value.merge_into(&mut spec);
spec
}
}
/// The actual value given by the specification.
#[derive(Clone, Debug, Eq, PartialEq)]
enum SpecValue {
None,
Fg(Color),
Bg(Color),
Style(Style),
}
/// The set of configurable portions of ripgrep's output.
#[derive(Clone, Debug, Eq, PartialEq)]
enum OutType {
Path,
Line,
Column,
Match,
}
/// The specification type.
#[derive(Clone, Debug, Eq, PartialEq)]
enum SpecType {
Fg,
Bg,
Style,
None,
}
/// The set of available styles for use in the terminal.
#[derive(Clone, Debug, Eq, PartialEq)]
enum Style {
Bold,
NoBold,
Intense,
NoIntense,
Underline,
NoUnderline
}
impl ColorSpecs {
/// Create color specifications from a list of user supplied
/// specifications.
pub fn new(specs: &[UserColorSpec]) -> ColorSpecs {
let mut merged = ColorSpecs::default();
for spec in specs {
match spec.ty {
OutType::Path => spec.merge_into(&mut merged.path),
OutType::Line => spec.merge_into(&mut merged.line),
OutType::Column => spec.merge_into(&mut merged.column),
OutType::Match => spec.merge_into(&mut merged.matched),
}
}
merged
}
/// Return the color specification for coloring file paths.
pub fn path(&self) -> &ColorSpec {
&self.path
}
/// Return the color specification for coloring line numbers.
pub fn line(&self) -> &ColorSpec {
&self.line
}
/// Return the color specification for coloring column numbers.
pub fn column(&self) -> &ColorSpec {
&self.column
}
/// Return the color specification for coloring matched text.
pub fn matched(&self) -> &ColorSpec {
&self.matched
}
}
impl UserColorSpec {
/// Merge this spec into the given color specification.
fn merge_into(&self, cspec: &mut ColorSpec) {
self.value.merge_into(cspec);
}
}
impl SpecValue {
/// Merge this spec value into the given color specification.
fn merge_into(&self, cspec: &mut ColorSpec) {
match *self {
SpecValue::None => cspec.clear(),
SpecValue::Fg(ref color) => { cspec.set_fg(Some(color.clone())); }
SpecValue::Bg(ref color) => { cspec.set_bg(Some(color.clone())); }
SpecValue::Style(ref style) => {
match *style {
Style::Bold => { cspec.set_bold(true); }
Style::NoBold => { cspec.set_bold(false); }
Style::Intense => { cspec.set_intense(true); }
Style::NoIntense => { cspec.set_intense(false); }
Style::Underline => { cspec.set_underline(true); }
Style::NoUnderline => { cspec.set_underline(false); }
}
}
}
}
}
impl FromStr for UserColorSpec {
type Err = ColorError;
fn from_str(s: &str) -> Result<UserColorSpec, ColorError> {
let pieces: Vec<&str> = s.split(':').collect();
if pieces.len() <= 1 || pieces.len() > 3 {
return Err(ColorError::InvalidFormat(s.to_string()));
}
let otype: OutType = pieces[0].parse()?;
match pieces[1].parse()? {
SpecType::None => {
Ok(UserColorSpec {
ty: otype,
value: SpecValue::None,
})
}
SpecType::Style => {
if pieces.len() < 3 {
return Err(ColorError::InvalidFormat(s.to_string()));
}
let style: Style = pieces[2].parse()?;
Ok(UserColorSpec { ty: otype, value: SpecValue::Style(style) })
}
SpecType::Fg => {
if pieces.len() < 3 {
return Err(ColorError::InvalidFormat(s.to_string()));
}
let color: Color = pieces[2]
.parse()
.map_err(ColorError::from_parse_error)?;
Ok(UserColorSpec { ty: otype, value: SpecValue::Fg(color) })
}
SpecType::Bg => {
if pieces.len() < 3 {
return Err(ColorError::InvalidFormat(s.to_string()));
}
let color: Color = pieces[2]
.parse()
.map_err(ColorError::from_parse_error)?;
Ok(UserColorSpec { ty: otype, value: SpecValue::Bg(color) })
}
}
}
}
impl FromStr for OutType {
type Err = ColorError;
fn from_str(s: &str) -> Result<OutType, ColorError> {
match &*s.to_lowercase() {
"path" => Ok(OutType::Path),
"line" => Ok(OutType::Line),
"column" => Ok(OutType::Column),
"match" => Ok(OutType::Match),
_ => Err(ColorError::UnrecognizedOutType(s.to_string())),
}
}
}
impl FromStr for SpecType {
type Err = ColorError;
fn from_str(s: &str) -> Result<SpecType, ColorError> {
match &*s.to_lowercase() {
"fg" => Ok(SpecType::Fg),
"bg" => Ok(SpecType::Bg),
"style" => Ok(SpecType::Style),
"none" => Ok(SpecType::None),
_ => Err(ColorError::UnrecognizedSpecType(s.to_string())),
}
}
}
impl FromStr for Style {
type Err = ColorError;
fn from_str(s: &str) -> Result<Style, ColorError> {
match &*s.to_lowercase() {
"bold" => Ok(Style::Bold),
"nobold" => Ok(Style::NoBold),
"intense" => Ok(Style::Intense),
"nointense" => Ok(Style::NoIntense),
"underline" => Ok(Style::Underline),
"nounderline" => Ok(Style::NoUnderline),
_ => Err(ColorError::UnrecognizedStyle(s.to_string())),
}
}
}

View File

@ -0,0 +1,90 @@
use std::io::{self, Write};
use termcolor::{ColorSpec, WriteColor};
/// A writer that counts the number of bytes that have been successfully
/// written.
#[derive(Clone, Debug)]
pub struct CounterWriter<W> {
wtr: W,
count: u64,
total_count: u64,
}
impl<W: Write> CounterWriter<W> {
pub fn new(wtr: W) -> CounterWriter<W> {
CounterWriter { wtr: wtr, count: 0, total_count: 0 }
}
}
impl<W> CounterWriter<W> {
/// Returns the total number of bytes written since construction or the
/// last time `reset` was called.
pub fn count(&self) -> u64 {
self.count
}
/// Returns the total number of bytes written since construction.
pub fn total_count(&self) -> u64 {
self.total_count + self.count
}
/// Resets the number of bytes written to `0`.
pub fn reset_count(&mut self) {
self.total_count += self.count;
self.count = 0;
}
/// Clear resets all counting related state for this writer.
///
/// After this call, the total count of bytes written to the underlying
/// writer is erased and reset.
#[allow(dead_code)]
pub fn clear(&mut self) {
self.count = 0;
self.total_count = 0;
}
#[allow(dead_code)]
pub fn get_ref(&self) -> &W {
&self.wtr
}
pub fn get_mut(&mut self) -> &mut W {
&mut self.wtr
}
pub fn into_inner(self) -> W {
self.wtr
}
}
impl<W: Write> Write for CounterWriter<W> {
fn write(&mut self, buf: &[u8]) -> Result<usize, io::Error> {
let n = self.wtr.write(buf)?;
self.count += n as u64;
Ok(n)
}
fn flush(&mut self) -> Result<(), io::Error> {
self.wtr.flush()
}
}
impl<W: WriteColor> WriteColor for CounterWriter<W> {
fn supports_color(&self) -> bool {
self.wtr.supports_color()
}
fn set_color(&mut self, spec: &ColorSpec) -> io::Result<()> {
self.wtr.set_color(spec)
}
fn reset(&mut self) -> io::Result<()> {
self.wtr.reset()
}
fn is_synchronous(&self) -> bool {
self.wtr.is_synchronous()
}
}

914
grep-printer/src/json.rs Normal file
View File

@ -0,0 +1,914 @@
use std::io::{self, Write};
use std::path::Path;
use std::time::Instant;
use grep_matcher::{Match, Matcher};
use grep_searcher::{
Searcher,
Sink, SinkError, SinkContext, SinkContextKind, SinkFinish, SinkMatch,
};
use serde_json as json;
use counter::CounterWriter;
use jsont;
use stats::Stats;
/// The configuration for the JSON printer.
///
/// This is manipulated by the JSONBuilder and then referenced by the actual
/// implementation. Once a printer is build, the configuration is frozen and
/// cannot changed.
#[derive(Debug, Clone)]
struct Config {
pretty: bool,
max_matches: Option<u64>,
always_begin_end: bool,
}
impl Default for Config {
fn default() -> Config {
Config {
pretty: false,
max_matches: None,
always_begin_end: false,
}
}
}
/// A builder for a JSON lines printer.
///
/// The builder permits configuring how the printer behaves. The JSON printer
/// has fewer configuration options than the standard printer because it is
/// a structured format, and the printer always attempts to find the most
/// information possible.
///
/// Some configuration options, such as whether line numbers are included or
/// whether contextual lines are shown, are drawn directly from the
/// `grep_searcher::Searcher`'s configuration.
///
/// Once a `JSON` printer is built, its configuration cannot be changed.
#[derive(Clone, Debug)]
pub struct JSONBuilder {
config: Config,
}
impl JSONBuilder {
/// Return a new builder for configuring the JSON printer.
pub fn new() -> JSONBuilder {
JSONBuilder { config: Config::default() }
}
/// Create a JSON printer that writes results to the given writer.
pub fn build<W: io::Write>(&self, wtr: W) -> JSON<W> {
JSON {
config: self.config.clone(),
wtr: CounterWriter::new(wtr),
matches: vec![],
}
}
/// Print JSON in a pretty printed format.
///
/// Enabling this will no longer produce a "JSON lines" format, in that
/// each JSON object printed may span multiple lines.
///
/// This is disabled by default.
pub fn pretty(&mut self, yes: bool) -> &mut JSONBuilder {
self.config.pretty = yes;
self
}
/// Set the maximum amount of matches that are printed.
///
/// If multi line search is enabled and a match spans multiple lines, then
/// that match is counted exactly once for the purposes of enforcing this
/// limit, regardless of how many lines it spans.
pub fn max_matches(&mut self, limit: Option<u64>) -> &mut JSONBuilder {
self.config.max_matches = limit;
self
}
/// When enabled, the `begin` and `end` messages are always emitted, even
/// when no match is found.
///
/// When disabled, the `begin` and `end` messages are only shown is there
/// is at least one `match` or `context` message.
///
/// This is disabled by default.
pub fn always_begin_end(&mut self, yes: bool) -> &mut JSONBuilder {
self.config.always_begin_end = yes;
self
}
}
/// The JSON printer, which emits results in a JSON lines format.
///
/// This type is generic over `W`, which represents any implementation of
/// the standard library `io::Write` trait.
///
/// # Format
///
/// This section describe the JSON format used by this printer.
///
/// To skip the rigamarole, take a look at the
/// [example](#example)
/// at the end.
///
/// ## Overview
///
/// The format of this printer is the [JSON Lines](http://jsonlines.org/)
/// format. Specifically, this printer emits a sequence of messages, where
/// each message is encoded as a single JSON value on a single line. There are
/// four different types of messages (and this number may expand over time):
///
/// * **begin** - A message that indicates a file is being searched.
/// * **end** - A message the indicates a file is done being searched. This
/// message also include summary statistics about the search.
/// * **match** - A message that indicates a match was found. This includes
/// the text and offsets of the match.
/// * **context** - A message that indicates a contextual line was found.
/// This includes the text of the line, along with any match information if
/// the search was inverted.
///
/// Every message is encoded in the same envelope format, which includes a tag
/// indicating the message type along with an object for the payload:
///
/// ```json
/// {
/// "type": "{begin|end|match|context}",
/// "data": { ... }
/// }
/// ```
///
/// The message itself is encoded in the envelope's `data` key.
///
/// ## Text encoding
///
/// Before describing each message format, we first must briefly discuss text
/// encoding, since it factors into every type of message. In particular, JSON
/// may only be encoded in UTF-8, UTF-16 or UTF-32. For the purposes of this
/// printer, we need only worry about UTF-8. The problem here is that searching
/// is not limited to UTF-8 exclusively, which in turn implies that matches
/// may be reported that contain invalid UTF-8. Moreover, this printer may
/// also print file paths, and the encoding of file paths is itself not
/// guarnateed to be valid UTF-8. Therefore, this printer must deal with the
/// presence of invalid UTF-8 somehow. The printer could silently ignore such
/// things completely, or even lossily transcode invalid UTF-8 to valid UTF-8
/// by replacing all invalid sequences with the Unicode replacement character.
/// However, this would prevent consumers of this format from accessing the
/// original data in a non-lossy way.
///
/// Therefore, this printer will emit valid UTF-8 encoded bytes as normal
/// JSON strings and otherwise base64 encode data that isn't valid UTF-8. To
/// communicate whether this process occurs or not, strings are keyed by the
/// name `text` where as arbitrary bytes are keyed by `bytes`.
///
/// For example, when a path is included in a message, it is formatted like so,
/// if and only if the path is valid UTF-8:
///
/// ```json
/// {
/// "path": {
/// "text": "/home/ubuntu/lib.rs"
/// }
/// }
/// ```
///
/// If instead our path was `/home/ubuntu/lib\xFF.rs`, where the `\xFF` byte
/// makes it invalid UTF-8, the path would instead be encoded like so:
///
/// ```json
/// {
/// "path": {
/// "bytes": "L2hvbWUvdWJ1bnR1L2xpYv8ucnM="
/// }
/// }
/// ```
///
/// This same representation is used for reporting matches as well.
///
/// The printer guarantees that the `text` field is used whenever the
/// underlying bytes are valid UTF-8.
///
/// ## Wire format
///
/// This section documents the wire format emitted by this printer, starting
/// with the four types of messages.
///
/// Each message has its own format, and is contained inside an envelope that
/// indicates the type of message. The envelope has these fields:
///
/// * **type** - A string indicating the type of this message. It may be one
/// of four possible strings: `begin`, `end`, `match` or `context`. This
/// list may expand over time.
/// * **data** - The actual message data. The format of this field depends on
/// the value of `type`. The possible message formats are
/// [`begin`](#message-begin),
/// [`end`](#message-end),
/// [`match`](#message-match),
/// [`context`](#message-context).
///
/// #### Message: **begin**
///
/// This message indicates that a search has begun. It has these fields:
///
/// * **path** - An
/// [arbitrary data object](#object-arbitrary-data)
/// representing the file path corresponding to the search, if one is
/// present. If no file path is available, then this field is `null`.
///
/// #### Message: **end**
///
/// This message indicates that a search has finished. It has these fields:
///
/// * **path** - An
/// [arbitrary data object](#object-arbitrary-data)
/// representing the file path corresponding to the search, if one is
/// present. If no file path is available, then this field is `null`.
/// * **binary_offset** - The absolute offset in the data searched
/// corresponding to the place at which binary data was detected. If no
/// binary data was detected (or if binary detection was disabled), then this
/// field is `null`.
/// * **stats** - A [`stats` object](#object-stats) that contains summary
/// statistics for the previous search.
///
/// #### Message: **match**
///
/// This message indicates that a match has been found. A match generally
/// corresponds to a single line of text, although it may correspond to
/// multiple lines if the search can emit matches over multiple lines. It
/// has these fields:
///
/// * **path** - An
/// [arbitrary data object](#object-arbitrary-data)
/// representing the file path corresponding to the search, if one is
/// present. If no file path is available, then this field is `null`.
/// * **lines** - An
/// [arbitrary data object](#object-arbitrary-data)
/// representing one or more lines contained in this match.
/// * **line_number** - If the searcher has been configured to report line
/// numbers, then this corresponds to the line number of the first line
/// in `lines`. If no line numbers are available, then this is `null`.
/// * **absolute_offset** - The absolute byte offset corresponding to the start
/// of `lines` in the data being searched.
/// * **submatches** - An array of [`submatch` objects](#object-submatch)
/// corresponding to matches in `lines`. The offsets included in each
/// `submatch` correspond to byte offsets into `lines`. (If `lines` is base64
/// encoded, then the byte offsets correspond to the data after base64
/// decoding.) The `submatch` objects are guaranteed to be sorted by their
/// starting offsets. Note that it is possible for this array to be empty,
/// for example, when searching reports inverted matches.
///
/// #### Message: **context**
///
/// This message indicates that a contextual line has been found. A contextual
/// line is a line that doesn't contain a match, but is generally adjacent to
/// a line that does contain a match. The precise way in which contextual lines
/// are reported is determined by the searcher. It has these fields, which are
/// exactly the same fields found in a [`match`](#message-match):
///
/// * **path** - An
/// [arbitrary data object](#object-arbitrary-data)
/// representing the file path corresponding to the search, if one is
/// present. If no file path is available, then this field is `null`.
/// * **lines** - An
/// [arbitrary data object](#object-arbitrary-data)
/// representing one or more lines contained in this context. This includes
/// line terminators, if they're present.
/// * **line_number** - If the searcher has been configured to report line
/// numbers, then this corresponds to the line number of the first line
/// in `lines`. If no line numbers are available, then this is `null`.
/// * **absolute_offset** - The absolute byte offset corresponding to the start
/// of `lines` in the data being searched.
/// * **submatches** - An array of [`submatch` objects](#object-submatch)
/// corresponding to matches in `lines`. The offsets included in each
/// `submatch` correspond to byte offsets into `lines`. (If `lines` is base64
/// encoded, then the byte offsets correspond to the data after base64
/// decoding.) The `submatch` objects are guaranteed to be sorted by
/// their starting offsets. Note that it is possible for this array to be
/// non-empty, for example, when searching reports inverted matches such that
/// the original matcher could match things in the contextual lines.
///
/// #### Object: **submatch**
///
/// This object describes submatches found within `match` or `context`
/// messages. The `start` and `end` fields indicate the half-open interval on
/// which the match occurs (`start` is included, but `end` is not). It is
/// guaranteed that `start <= end`. It has these fields:
///
/// * **match** - An
/// [arbitrary data object](#object-arbitrary-data)
/// corresponding to the text in this submatch.
/// * **start** - A byte offset indicating the start of this match. This offset
/// is generally reported in terms of the parent object's data. For example,
/// the `lines` field in the
/// [`match`](#message-match) or [`context`](#message-context)
/// messages.
/// * **end** - A byte offset indicating the end of this match. This offset
/// is generally reported in terms of the parent object's data. For example,
/// the `lines` field in the
/// [`match`](#message-match) or [`context`](#message-context)
/// messages.
///
/// #### Object: **stats**
///
/// This object is included in messages and contains summary statistics about
/// a search. It has these fields:
///
/// * **elapsed** - A [`duration` object](#object-duration) describing the
/// length of time that elapsed while performing the search.
/// * **searches** - The number of searches that have run. For this printer,
/// this value is always `1`. (Implementations may emit additional message
/// types that use this same `stats` object that represents summary
/// statistics over multiple searches.)
/// * **searches_with_match** - The number of searches that have run that have
/// found at least one match. This is never more than `searches`.
/// * **bytes_searched** - The total number of bytes that have been searched.
/// * **bytes_printed** - The total number of bytes that have been printed.
/// This includes everything emitted by this printer.
/// * **matched_lines** - The total number of lines that participated in a
/// match. When matches may contain multiple lines, then this includes every
/// line that is part of every match.
/// * **matches** - The total number of matches. There may be multiple matches
/// per line. When matches may contain multiple lines, each match is counted
/// only once, regardless of how many lines it spans.
///
/// #### Object: **duration**
///
/// This object includes a few fields for describing a duration. Two of its
/// fields, `secs` and `nanos`, can be combined to give nanosecond precision
/// on systems that support it. It has these fields:
///
/// * **secs** - A whole number of seconds indicating the length of this
/// duration.
/// * **nanos** - A fractional part of this duration represent by nanoseconds.
/// If nanosecond precision isn't supported, then this is typically rounded
/// up to the nearest number of nanoseconds.
/// * **human** - A human readable string describing the length of the
/// duration. The format of the string is itself unspecified.
///
/// #### Object: **arbitrary data**
///
/// This object is used whenever arbitrary data needs to be represented as a
/// JSON value. This object contains two fields, where generally only one of
/// the fields is present:
///
/// * **text** - A normal JSON string that is UTF-8 encoded. This field is
/// populated if and only if the underlying data is valid UTF-8.
/// * **bytes** - A normal JSON string that is a base64 encoding of the
/// underlying bytes.
///
/// More information on the motivation for this representation can be seen in
/// the section [text encoding](#text-encoding) above.
///
/// ## Example
///
/// This section shows a small example that includes all message types.
///
/// Here's the file we want to search, located at `/home/andrew/sherlock`:
///
/// ```text
/// For the Doctor Watsons of this world, as opposed to the Sherlock
/// Holmeses, success in the province of detective work must always
/// be, to a very large extent, the result of luck. Sherlock Holmes
/// can extract a clew from a wisp of straw or a flake of cigar ash;
/// but Doctor Watson has to have it taken out for him and dusted,
/// and exhibited clearly, with a label attached.
/// ```
///
/// Searching for `Watson` with a `before_context` of `1` with line numbers
/// enabled shows something like this using the standard printer:
///
/// ```text
/// sherlock:1:For the Doctor Watsons of this world, as opposed to the Sherlock
/// --
/// sherlock-4-can extract a clew from a wisp of straw or a flake of cigar ash;
/// sherlock:5:but Doctor Watson has to have it taken out for him and dusted,
/// ```
///
/// Here's what the same search looks like using the JSON wire format described
/// above, where in we show semi-prettified JSON (instead of a strict JSON
/// Lines format), for illustrative purposes:
///
/// ```json
/// {
/// "type": "begin",
/// "data": {
/// "path": {"text": "/home/andrew/sherlock"}}
/// }
/// }
/// {
/// "type": "match",
/// "data": {
/// "path": {"text": "/home/andrew/sherlock"},
/// "lines": {"text": "For the Doctor Watsons of this world, as opposed to the Sherlock\n"},
/// "line_number": 1,
/// "absolute_offset": 0,
/// "submatches": [
/// {"match": {"text": "Watson"}, "start": 15, "end": 21}
/// ]
/// }
/// }
/// {
/// "type": "context",
/// "data": {
/// "path": {"text": "/home/andrew/sherlock"},
/// "lines": {"text": "can extract a clew from a wisp of straw or a flake of cigar ash;\n"},
/// "line_number": 4,
/// "absolute_offset": 193,
/// "submatches": []
/// }
/// }
/// {
/// "type": "match",
/// "data": {
/// "path": {"text": "/home/andrew/sherlock"},
/// "lines": {"text": "but Doctor Watson has to have it taken out for him and dusted,\n"},
/// "line_number": 5,
/// "absolute_offset": 258,
/// "submatches": [
/// {"match": {"text": "Watson"}, "start": 11, "end": 17}
/// ]
/// }
/// }
/// {
/// "type": "end",
/// "data": {
/// "path": {"text": "/home/andrew/sherlock"},
/// "binary_offset": null,
/// "stats": {
/// "elapsed": {"secs": 0, "nanos": 36296, "human": "0.0000s"},
/// "searches": 1,
/// "searches_with_match": 1,
/// "bytes_searched": 367,
/// "bytes_printed": 1151,
/// "matched_lines": 2,
/// "matches": 2
/// }
/// }
/// }
/// ```
#[derive(Debug)]
pub struct JSON<W> {
config: Config,
wtr: CounterWriter<W>,
matches: Vec<Match>,
}
impl<W: io::Write> JSON<W> {
/// Return a JSON lines printer with a default configuration that writes
/// matches to the given writer.
pub fn new(wtr: W) -> JSON<W> {
JSONBuilder::new().build(wtr)
}
/// Return an implementation of `Sink` for the JSON printer.
///
/// This does not associate the printer with a file path, which means this
/// implementation will never print a file path along with the matches.
pub fn sink<'s, M: Matcher>(
&'s mut self,
matcher: M,
) -> JSONSink<'static, 's, M, W> {
JSONSink {
matcher: matcher,
json: self,
path: None,
start_time: Instant::now(),
match_count: 0,
after_context_remaining: 0,
binary_byte_offset: None,
begin_printed: false,
stats: Stats::new(),
}
}
/// Return an implementation of `Sink` associated with a file path.
///
/// When the printer is associated with a path, then it may, depending on
/// its configuration, print the path along with the matches found.
pub fn sink_with_path<'p, 's, M, P>(
&'s mut self,
matcher: M,
path: &'p P,
) -> JSONSink<'p, 's, M, W>
where M: Matcher,
P: ?Sized + AsRef<Path>,
{
JSONSink {
matcher: matcher,
json: self,
path: Some(path.as_ref()),
start_time: Instant::now(),
match_count: 0,
after_context_remaining: 0,
binary_byte_offset: None,
begin_printed: false,
stats: Stats::new(),
}
}
/// Write the given message followed by a new line. The new line is
/// determined from the configuration of the given searcher.
fn write_message(&mut self, message: &jsont::Message) -> io::Result<()> {
if self.config.pretty {
json::to_writer_pretty(&mut self.wtr, message)?;
} else {
json::to_writer(&mut self.wtr, message)?;
}
self.wtr.write(&[b'\n'])?;
Ok(())
}
}
impl<W> JSON<W> {
/// Returns true if and only if this printer has written at least one byte
/// to the underlying writer during any of the previous searches.
pub fn has_written(&self) -> bool {
self.wtr.total_count() > 0
}
/// Return a mutable reference to the underlying writer.
pub fn get_mut(&mut self) -> &mut W {
self.wtr.get_mut()
}
/// Consume this printer and return back ownership of the underlying
/// writer.
pub fn into_inner(self) -> W {
self.wtr.into_inner()
}
}
/// An implementation of `Sink` associated with a matcher and an optional file
/// path for the JSON printer.
///
/// This type is generic over a few type parameters:
///
/// * `'p` refers to the lifetime of the file path, if one is provided. When
/// no file path is given, then this is `'static`.
/// * `'s` refers to the lifetime of the
/// [`JSON`](struct.JSON.html)
/// printer that this type borrows.
/// * `M` refers to the type of matcher used by
/// `grep_searcher::Searcher` that is reporting results to this sink.
/// * `W` refers to the underlying writer that this printer is writing its
/// output to.
#[derive(Debug)]
pub struct JSONSink<'p, 's, M: Matcher, W: 's> {
matcher: M,
json: &'s mut JSON<W>,
path: Option<&'p Path>,
start_time: Instant,
match_count: u64,
after_context_remaining: u64,
binary_byte_offset: Option<u64>,
begin_printed: bool,
stats: Stats,
}
impl<'p, 's, M: Matcher, W: io::Write> JSONSink<'p, 's, M, W> {
/// Returns true if and only if this printer received a match in the
/// previous search.
///
/// This is unaffected by the result of searches before the previous
/// search.
pub fn has_match(&self) -> bool {
self.match_count > 0
}
/// Return the total number of matches reported to this sink.
///
/// This corresponds to the number of times `Sink::matched` is called.
pub fn match_count(&self) -> u64 {
self.match_count
}
/// If binary data was found in the previous search, this returns the
/// offset at which the binary data was first detected.
///
/// The offset returned is an absolute offset relative to the entire
/// set of bytes searched.
///
/// This is unaffected by the result of searches before the previous
/// search. e.g., If the search prior to the previous search found binary
/// data but the previous search found no binary data, then this will
/// return `None`.
pub fn binary_byte_offset(&self) -> Option<u64> {
self.binary_byte_offset
}
/// Return a reference to the stats produced by the printer for all
/// searches executed on this sink.
pub fn stats(&self) -> &Stats {
&self.stats
}
/// Execute the matcher over the given bytes and record the match
/// locations if the current configuration demands match granularity.
fn record_matches(&mut self, bytes: &[u8]) -> io::Result<()> {
self.json.matches.clear();
// If printing requires knowing the location of each individual match,
// then compute and stored those right now for use later. While this
// adds an extra copy for storing the matches, we do amortize the
// allocation for it and this greatly simplifies the printing logic to
// the extent that it's easy to ensure that we never do more than
// one search to find the matches.
let matches = &mut self.json.matches;
self.matcher.find_iter(bytes, |m| {
matches.push(m);
true
}).map_err(io::Error::error_message)?;
Ok(())
}
/// Returns true if this printer should quit.
///
/// This implements the logic for handling quitting after seeing a certain
/// amount of matches. In most cases, the logic is simple, but we must
/// permit all "after" contextual lines to print after reaching the limit.
fn should_quit(&self) -> bool {
let limit = match self.json.config.max_matches {
None => return false,
Some(limit) => limit,
};
if self.match_count < limit {
return false;
}
self.after_context_remaining == 0
}
/// Write the "begin" message.
fn write_begin_message(&mut self) -> io::Result<()> {
if self.begin_printed {
return Ok(());
}
let msg = jsont::Message::Begin(jsont::Begin {
path: self.path,
});
self.json.write_message(&msg)?;
self.begin_printed = true;
Ok(())
}
}
impl<'p, 's, M: Matcher, W: io::Write> Sink for JSONSink<'p, 's, M, W> {
type Error = io::Error;
fn matched(
&mut self,
searcher: &Searcher,
mat: &SinkMatch,
) -> Result<bool, io::Error> {
self.write_begin_message()?;
self.match_count += 1;
self.after_context_remaining = searcher.after_context() as u64;
self.record_matches(mat.bytes())?;
self.stats.add_matches(self.json.matches.len() as u64);
self.stats.add_matched_lines(mat.lines().count() as u64);
let submatches = SubMatches::new(mat.bytes(), &self.json.matches);
let msg = jsont::Message::Match(jsont::Match {
path: self.path,
lines: mat.bytes(),
line_number: mat.line_number(),
absolute_offset: mat.absolute_byte_offset(),
submatches: submatches.as_slice(),
});
self.json.write_message(&msg)?;
Ok(!self.should_quit())
}
fn context(
&mut self,
searcher: &Searcher,
ctx: &SinkContext,
) -> Result<bool, io::Error> {
self.write_begin_message()?;
self.json.matches.clear();
if ctx.kind() == &SinkContextKind::After {
self.after_context_remaining =
self.after_context_remaining.saturating_sub(1);
}
let submatches =
if searcher.invert_match() {
self.record_matches(ctx.bytes())?;
SubMatches::new(ctx.bytes(), &self.json.matches)
} else {
SubMatches::empty()
};
let msg = jsont::Message::Context(jsont::Context {
path: self.path,
lines: ctx.bytes(),
line_number: ctx.line_number(),
absolute_offset: ctx.absolute_byte_offset(),
submatches: submatches.as_slice(),
});
self.json.write_message(&msg)?;
Ok(!self.should_quit())
}
fn begin(
&mut self,
_searcher: &Searcher,
) -> Result<bool, io::Error> {
self.json.wtr.reset_count();
self.start_time = Instant::now();
self.match_count = 0;
self.after_context_remaining = 0;
self.binary_byte_offset = None;
if self.json.config.max_matches == Some(0) {
return Ok(false);
}
if !self.json.config.always_begin_end {
return Ok(true);
}
self.write_begin_message()?;
Ok(true)
}
fn finish(
&mut self,
_searcher: &Searcher,
finish: &SinkFinish,
) -> Result<(), io::Error> {
if !self.begin_printed {
return Ok(());
}
self.binary_byte_offset = finish.binary_byte_offset();
self.stats.add_elapsed(self.start_time.elapsed());
self.stats.add_searches(1);
if self.match_count > 0 {
self.stats.add_searches_with_match(1);
}
self.stats.add_bytes_searched(finish.byte_count());
self.stats.add_bytes_printed(self.json.wtr.count());
let msg = jsont::Message::End(jsont::End {
path: self.path,
binary_offset: finish.binary_byte_offset(),
stats: self.stats.clone(),
});
self.json.write_message(&msg)?;
Ok(())
}
}
/// SubMatches represents a set of matches in a contiguous range of bytes.
///
/// A simpler representation for this would just simply be `Vec<SubMatch>`,
/// but the common case is exactly one match per range of bytes, which we
/// specialize here using a fixed size array without any allocation.
enum SubMatches<'a> {
Empty,
Small([jsont::SubMatch<'a>; 1]),
Big(Vec<jsont::SubMatch<'a>>),
}
impl<'a> SubMatches<'a> {
/// Create a new set of match ranges from a set of matches and the
/// corresponding bytes that those matches apply to.
fn new(bytes: &'a[u8], matches: &[Match]) -> SubMatches<'a> {
if matches.len() == 1 {
let mat = matches[0];
SubMatches::Small([jsont::SubMatch {
m: &bytes[mat],
start: mat.start(),
end: mat.end(),
}])
} else {
let mut match_ranges = vec![];
for &mat in matches {
match_ranges.push(jsont::SubMatch {
m: &bytes[mat],
start: mat.start(),
end: mat.end(),
});
}
SubMatches::Big(match_ranges)
}
}
/// Create an empty set of match ranges.
fn empty() -> SubMatches<'static> {
SubMatches::Empty
}
/// Return this set of match ranges as a slice.
fn as_slice(&self) -> &[jsont::SubMatch] {
match *self {
SubMatches::Empty => &[],
SubMatches::Small(ref x) => x,
SubMatches::Big(ref x) => x,
}
}
}
#[cfg(test)]
mod tests {
use grep_regex::RegexMatcher;
use grep_searcher::SearcherBuilder;
use super::{JSON, JSONBuilder};
const SHERLOCK: &'static [u8] = b"\
For the Doctor Watsons of this world, as opposed to the Sherlock
Holmeses, success in the province of detective work must always
be, to a very large extent, the result of luck. Sherlock Holmes
can extract a clew from a wisp of straw or a flake of cigar ash;
but Doctor Watson has to have it taken out for him and dusted,
and exhibited clearly, with a label attached.
";
fn printer_contents(
printer: &mut JSON<Vec<u8>>,
) -> String {
String::from_utf8(printer.get_mut().to_owned()).unwrap()
}
#[test]
fn binary_detection() {
use grep_searcher::BinaryDetection;
const BINARY: &'static [u8] = b"\
For the Doctor Watsons of this world, as opposed to the Sherlock
Holmeses, success in the province of detective work must always
be, to a very large extent, the result of luck. Sherlock Holmes
can extract a clew \x00 from a wisp of straw or a flake of cigar ash;
but Doctor Watson has to have it taken out for him and dusted,
and exhibited clearly, with a label attached.\
";
let matcher = RegexMatcher::new(
r"Watson"
).unwrap();
let mut printer = JSONBuilder::new()
.build(vec![]);
SearcherBuilder::new()
.binary_detection(BinaryDetection::quit(b'\x00'))
.heap_limit(Some(80))
.build()
.search_reader(&matcher, BINARY, printer.sink(&matcher))
.unwrap();
let got = printer_contents(&mut printer);
assert_eq!(got.lines().count(), 3);
let last = got.lines().last().unwrap();
assert!(last.contains(r#""binary_offset":212,"#));
}
#[test]
fn max_matches() {
let matcher = RegexMatcher::new(
r"Watson"
).unwrap();
let mut printer = JSONBuilder::new()
.max_matches(Some(1))
.build(vec![]);
SearcherBuilder::new()
.build()
.search_reader(&matcher, SHERLOCK, printer.sink(&matcher))
.unwrap();
let got = printer_contents(&mut printer);
assert_eq!(got.lines().count(), 3);
}
#[test]
fn no_match() {
let matcher = RegexMatcher::new(
r"DOES NOT MATCH"
).unwrap();
let mut printer = JSONBuilder::new()
.build(vec![]);
SearcherBuilder::new()
.build()
.search_reader(&matcher, SHERLOCK, printer.sink(&matcher))
.unwrap();
let got = printer_contents(&mut printer);
assert!(got.is_empty());
}
#[test]
fn always_begin_end_no_match() {
let matcher = RegexMatcher::new(
r"DOES NOT MATCH"
).unwrap();
let mut printer = JSONBuilder::new()
.always_begin_end(true)
.build(vec![]);
SearcherBuilder::new()
.build()
.search_reader(&matcher, SHERLOCK, printer.sink(&matcher))
.unwrap();
let got = printer_contents(&mut printer);
assert_eq!(got.lines().count(), 2);
assert!(got.contains("begin") && got.contains("end"));
}
}

213
grep-printer/src/jsont.rs Normal file
View File

@ -0,0 +1,213 @@
// This module defines the types we use for JSON serialization. We specifically
// omit deserialization, partially because there isn't a clear use case for
// them at this time, but also because deserialization will complicate things.
// Namely, the types below are designed in a way that permits JSON
// serialization with little or no allocation. Allocation is often quite
// convenient for deserialization however, so these types would become a bit
// more complex.
use std::borrow::Cow;
use std::path::Path;
use std::str;
use base64;
use serde::{Serialize, Serializer};
use stats::Stats;
#[derive(Serialize)]
#[serde(tag = "type", content = "data")]
#[serde(rename_all = "snake_case")]
pub enum Message<'a> {
Begin(Begin<'a>),
End(End<'a>),
Match(Match<'a>),
Context(Context<'a>),
}
#[derive(Serialize)]
pub struct Begin<'a> {
#[serde(serialize_with = "ser_path")]
pub path: Option<&'a Path>,
}
#[derive(Serialize)]
pub struct End<'a> {
#[serde(serialize_with = "ser_path")]
pub path: Option<&'a Path>,
pub binary_offset: Option<u64>,
pub stats: Stats,
}
#[derive(Serialize)]
pub struct Match<'a> {
#[serde(serialize_with = "ser_path")]
pub path: Option<&'a Path>,
#[serde(serialize_with = "ser_bytes")]
pub lines: &'a [u8],
pub line_number: Option<u64>,
pub absolute_offset: u64,
pub submatches: &'a [SubMatch<'a>],
}
#[derive(Serialize)]
pub struct Context<'a> {
#[serde(serialize_with = "ser_path")]
pub path: Option<&'a Path>,
#[serde(serialize_with = "ser_bytes")]
pub lines: &'a [u8],
pub line_number: Option<u64>,
pub absolute_offset: u64,
pub submatches: &'a [SubMatch<'a>],
}
#[derive(Serialize)]
pub struct SubMatch<'a> {
#[serde(rename = "match")]
#[serde(serialize_with = "ser_bytes")]
pub m: &'a [u8],
pub start: usize,
pub end: usize,
}
/// Data represents things that look like strings, but may actually not be
/// valid UTF-8. To handle this, `Data` is serialized as an object with one
/// of two keys: `text` (for valid UTF-8) or `bytes` (for invalid UTF-8).
///
/// The happy path is valid UTF-8, which streams right through as-is, since
/// it is natively supported by JSON. When invalid UTF-8 is found, then it is
/// represented as arbitrary bytes and base64 encoded.
#[derive(Clone, Debug, Hash, PartialEq, Eq, Serialize)]
#[serde(untagged)]
enum Data<'a> {
Text { text: Cow<'a, str> },
Bytes {
#[serde(serialize_with = "to_base64")]
bytes: &'a [u8],
},
}
impl<'a> Data<'a> {
fn from_bytes(bytes: &[u8]) -> Data {
match str::from_utf8(bytes) {
Ok(text) => Data::Text { text: Cow::Borrowed(text) },
Err(_) => Data::Bytes { bytes },
}
}
#[cfg(unix)]
fn from_path(path: &Path) -> Data {
use std::os::unix::ffi::OsStrExt;
match path.to_str() {
Some(text) => Data::Text { text: Cow::Borrowed(text) },
None => Data::Bytes { bytes: path.as_os_str().as_bytes() },
}
}
#[cfg(not(unix))]
fn from_path(path: &Path) -> Data {
// Using lossy conversion means some paths won't round trip precisely,
// but it's not clear what we should actually do. Serde rejects
// non-UTF-8 paths, and OsStr's are serialized as a sequence of UTF-16
// code units on Windows. Neither seem appropriate for this use case,
// so we do the easy thing for now.
Data::Text { text: path.to_string_lossy() }
}
// Unused deserialization routines.
/*
fn into_bytes(self) -> Vec<u8> {
match self {
Data::Text { text } => text.into_bytes(),
Data::Bytes { bytes } => bytes,
}
}
#[cfg(unix)]
fn into_path_buf(&self) -> PathBuf {
use std::os::unix::ffi::OsStrExt;
match self {
Data::Text { text } => PathBuf::from(text),
Data::Bytes { bytes } => {
PathBuf::from(OsStr::from_bytes(bytes))
}
}
}
#[cfg(not(unix))]
fn into_path_buf(&self) -> PathBuf {
match self {
Data::Text { text } => PathBuf::from(text),
Data::Bytes { bytes } => {
PathBuf::from(String::from_utf8_lossy(&bytes).into_owned())
}
}
}
*/
}
fn to_base64<T, S>(
bytes: T,
ser: S,
) -> Result<S::Ok, S::Error>
where T: AsRef<[u8]>,
S: Serializer
{
ser.serialize_str(&base64::encode(&bytes))
}
fn ser_bytes<T, S>(
bytes: T,
ser: S,
) -> Result<S::Ok, S::Error>
where T: AsRef<[u8]>,
S: Serializer
{
Data::from_bytes(bytes.as_ref()).serialize(ser)
}
fn ser_path<P, S>(
path: &Option<P>,
ser: S,
) -> Result<S::Ok, S::Error>
where P: AsRef<Path>,
S: Serializer
{
path.as_ref().map(|p| Data::from_path(p.as_ref())).serialize(ser)
}
// The following are some deserialization helpers, in case we decide to support
// deserialization of the above types.
/*
fn from_base64<'de, D>(
de: D,
) -> Result<Vec<u8>, D::Error>
where D: Deserializer<'de>
{
let encoded = String::deserialize(de)?;
let decoded = base64::decode(encoded.as_bytes())
.map_err(D::Error::custom)?;
Ok(decoded)
}
fn deser_bytes<'de, D>(
de: D,
) -> Result<Vec<u8>, D::Error>
where D: Deserializer<'de>
{
Data::deserialize(de).map(|datum| datum.into_bytes())
}
fn deser_path<'de, D>(
de: D,
) -> Result<Option<PathBuf>, D::Error>
where D: Deserializer<'de>
{
Option::<Data>::deserialize(de)
.map(|opt| opt.map(|datum| datum.into_path_buf()))
}
*/

108
grep-printer/src/lib.rs Normal file
View File

@ -0,0 +1,108 @@
/*!
This crate provides a featureful and fast printer for showing search results
in a human readable way, and another printer for showing results in a machine
readable way.
# Brief overview
The [`Standard`](struct.Standard.html) printer shows results in a human
readable format, and is modeled after the formats used by standard grep-like
tools. Features include, but are not limited to, cross platform terminal
coloring, search & replace, multi-line result handling and reporting summary
statistics.
The [`JSON`](struct.JSON.html) printer shows results in a machine readable
format. To facilitate a stream of search results, the format uses
[JSON Lines](http://jsonlines.org/)
by emitting a series of messages as search results are found.
The [`Summary`](struct.Summary.html) printer shows *aggregate* results for a
single search in a human readable format, and is modeled after similar formats
found in standard grep-like tools. This printer is useful for showing the total
number of matches and/or printing file paths that either contain or don't
contain matches.
# Example
This example shows how to create a "standard" printer and execute a search.
```
extern crate grep_regex;
extern crate grep_printer;
extern crate grep_searcher;
use std::error::Error;
use grep_regex::RegexMatcher;
use grep_printer::Standard;
use grep_searcher::Searcher;
const SHERLOCK: &'static [u8] = b"\
For the Doctor Watsons of this world, as opposed to the Sherlock
Holmeses, success in the province of detective work must always
be, to a very large extent, the result of luck. Sherlock Holmes
can extract a clew from a wisp of straw or a flake of cigar ash;
but Doctor Watson has to have it taken out for him and dusted,
and exhibited clearly, with a label attached.
";
# fn main() { example().unwrap(); }
fn example() -> Result<(), Box<Error>> {
let matcher = RegexMatcher::new(r"Sherlock")?;
let mut printer = Standard::new_no_color(vec![]);
Searcher::new().search_slice(&matcher, SHERLOCK, printer.sink(&matcher))?;
// into_inner gives us back the underlying writer we provided to
// new_no_color, which is wrapped in a termcolor::NoColor. Thus, a second
// into_inner gives us back the actual buffer.
let output = String::from_utf8(printer.into_inner().into_inner())?;
let expected = "\
1:For the Doctor Watsons of this world, as opposed to the Sherlock
3:be, to a very large extent, the result of luck. Sherlock Holmes
";
assert_eq!(output, expected);
Ok(())
}
```
*/
#![deny(missing_docs)]
#[cfg(feature = "serde1")]
extern crate base64;
extern crate grep_matcher;
#[cfg(test)]
extern crate grep_regex;
extern crate grep_searcher;
#[macro_use]
extern crate log;
#[cfg(feature = "serde1")]
extern crate serde;
#[cfg(feature = "serde1")]
#[macro_use]
extern crate serde_derive;
#[cfg(feature = "serde1")]
extern crate serde_json;
extern crate termcolor;
pub use color::{ColorError, ColorSpecs, UserColorSpec};
#[cfg(feature = "serde1")]
pub use json::{JSON, JSONBuilder, JSONSink};
pub use standard::{Standard, StandardBuilder, StandardSink};
pub use stats::Stats;
pub use summary::{Summary, SummaryBuilder, SummaryKind, SummarySink};
pub use util::PrinterPath;
#[macro_use]
mod macros;
mod color;
mod counter;
#[cfg(feature = "serde1")]
mod json;
#[cfg(feature = "serde1")]
mod jsont;
mod standard;
mod stats;
mod summary;
mod util;

View File

@ -0,0 +1,23 @@
#[cfg(test)]
#[macro_export]
macro_rules! assert_eq_printed {
($expected:expr, $got:expr) => {
let expected = &*$expected;
let got = &*$got;
if expected != got {
panic!("
printed outputs differ!
expected:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
{}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
got:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
{}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
", expected, got);
}
}
}

3033
grep-printer/src/standard.rs Normal file

File diff suppressed because it is too large Load Diff

147
grep-printer/src/stats.rs Normal file
View File

@ -0,0 +1,147 @@
use std::ops::{Add, AddAssign};
use std::time::Duration;
use util::NiceDuration;
/// Summary statistics produced at the end of a search.
///
/// When statistics are reported by a printer, they correspond to all searches
/// executed with that printer.
#[derive(Clone, Debug, Default, PartialEq, Eq)]
#[cfg_attr(feature = "serde1", derive(Serialize))]
pub struct Stats {
elapsed: NiceDuration,
searches: u64,
searches_with_match: u64,
bytes_searched: u64,
bytes_printed: u64,
matched_lines: u64,
matches: u64,
}
impl Add for Stats {
type Output = Stats;
fn add(self, rhs: Stats) -> Stats {
self + &rhs
}
}
impl<'a> Add<&'a Stats> for Stats {
type Output = Stats;
fn add(self, rhs: &'a Stats) -> Stats {
Stats {
elapsed: NiceDuration(self.elapsed.0 + rhs.elapsed.0),
searches: self.searches + rhs.searches,
searches_with_match:
self.searches_with_match + rhs.searches_with_match,
bytes_searched: self.bytes_searched + rhs.bytes_searched,
bytes_printed: self.bytes_printed + rhs.bytes_printed,
matched_lines: self.matched_lines + rhs.matched_lines,
matches: self.matches + rhs.matches,
}
}
}
impl AddAssign for Stats {
fn add_assign(&mut self, rhs: Stats) {
*self += &rhs;
}
}
impl<'a> AddAssign<&'a Stats> for Stats {
fn add_assign(&mut self, rhs: &'a Stats) {
self.elapsed.0 += rhs.elapsed.0;
self.searches += rhs.searches;
self.searches_with_match += rhs.searches_with_match;
self.bytes_searched += rhs.bytes_searched;
self.bytes_printed += rhs.bytes_printed;
self.matched_lines += rhs.matched_lines;
self.matches += rhs.matches;
}
}
impl Stats {
/// Return a new value for tracking aggregate statistics across searches.
///
/// All statistics are set to `0`.
pub fn new() -> Stats {
Stats::default()
}
/// Return the total amount of time elapsed.
pub fn elapsed(&self) -> Duration {
self.elapsed.0
}
/// Return the total number of searches executed.
pub fn searches(&self) -> u64 {
self.searches
}
/// Return the total number of searches that found at least one match.
pub fn searches_with_match(&self) -> u64 {
self.searches_with_match
}
/// Return the total number of bytes searched.
pub fn bytes_searched(&self) -> u64 {
self.bytes_searched
}
/// Return the total number of bytes printed.
pub fn bytes_printed(&self) -> u64 {
self.bytes_printed
}
/// Return the total number of lines that participated in a match.
///
/// When matches may contain multiple lines then this includes every line
/// that is part of every match.
pub fn matched_lines(&self) -> u64 {
self.matched_lines
}
/// Return the total number of matches.
///
/// There may be multiple matches per line.
pub fn matches(&self) -> u64 {
self.matches
}
/// Add to the elapsed time.
pub fn add_elapsed(&mut self, duration: Duration) {
self.elapsed.0 += duration;
}
/// Add to the number of searches executed.
pub fn add_searches(&mut self, n: u64) {
self.searches += n;
}
/// Add to the number of searches that found at least one match.
pub fn add_searches_with_match(&mut self, n: u64) {
self.searches_with_match += n;
}
/// Add to the total number of bytes searched.
pub fn add_bytes_searched(&mut self, n: u64) {
self.bytes_searched += n;
}
/// Add to the total number of bytes printed.
pub fn add_bytes_printed(&mut self, n: u64) {
self.bytes_printed += n;
}
/// Add to the total number of lines that participated in a match.
pub fn add_matched_lines(&mut self, n: u64) {
self.matched_lines += n;
}
/// Add to the total number of matches.
pub fn add_matches(&mut self, n: u64) {
self.matches += n;
}
}

1066
grep-printer/src/summary.rs Normal file

File diff suppressed because it is too large Load Diff

382
grep-printer/src/util.rs Normal file
View File

@ -0,0 +1,382 @@
use std::borrow::Cow;
use std::fmt;
use std::io;
use std::path::Path;
use std::time;
use grep_matcher::{Captures, LineTerminator, Match, Matcher};
use grep_searcher::{
LineIter,
SinkError, SinkContext, SinkContextKind, SinkMatch,
};
#[cfg(feature = "serde1")]
use serde::{Serialize, Serializer};
/// A type for handling replacements while amortizing allocation.
pub struct Replacer<M: Matcher> {
space: Option<Space<M>>,
}
struct Space<M: Matcher> {
/// The place to store capture locations.
caps: M::Captures,
/// The place to write a replacement to.
dst: Vec<u8>,
/// The place to store match offsets in terms of `dst`.
matches: Vec<Match>,
}
impl<M: Matcher> fmt::Debug for Replacer<M> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let (dst, matches) = self.replacement().unwrap_or((&[], &[]));
f.debug_struct("Replacer")
.field("dst", &dst)
.field("matches", &matches)
.finish()
}
}
impl<M: Matcher> Replacer<M> {
/// Create a new replacer for use with a particular matcher.
///
/// This constructor does not allocate. Instead, space for dealing with
/// replacements is allocated lazily only when needed.
pub fn new() -> Replacer<M> {
Replacer { space: None }
}
/// Executes a replacement on the given subject string by replacing all
/// matches with the given replacement. To access the result of the
/// replacement, use the `replacement` method.
///
/// This can fail if the underlying matcher reports an error.
pub fn replace_all<'a>(
&'a mut self,
matcher: &M,
subject: &[u8],
replacement: &[u8],
) -> io::Result<()> {
{
let &mut Space {
ref mut dst,
ref mut caps,
ref mut matches,
} = self.allocate(matcher)?;
dst.clear();
matches.clear();
matcher.replace_with_captures(
subject,
caps,
dst,
|caps, dst| {
let start = dst.len();
caps.interpolate(
|name| matcher.capture_index(name),
subject,
replacement,
dst,
);
let end = dst.len();
matches.push(Match::new(start, end));
true
},
).map_err(io::Error::error_message)?;
}
Ok(())
}
/// Return the result of the prior replacement and the match offsets for
/// all replacement occurrences within the returned replacement buffer.
///
/// If no replacement has occurred then `None` is returned.
pub fn replacement<'a>(&'a self) -> Option<(&'a [u8], &'a [Match])> {
match self.space {
None => None,
Some(ref space) => {
if space.matches.is_empty() {
None
} else {
Some((&space.dst, &space.matches))
}
}
}
}
/// Clear space used for performing a replacement.
///
/// Subsequent calls to `replacement` after calling `clear` (but before
/// executing another replacement) will always return `None`.
pub fn clear(&mut self) {
if let Some(ref mut space) = self.space {
space.dst.clear();
space.matches.clear();
}
}
/// Allocate space for replacements when used with the given matcher and
/// return a mutable reference to that space.
///
/// This can fail if allocating space for capture locations from the given
/// matcher fails.
fn allocate(&mut self, matcher: &M) -> io::Result<&mut Space<M>> {
if self.space.is_none() {
let caps = matcher
.new_captures()
.map_err(io::Error::error_message)?;
self.space = Some(Space {
caps: caps,
dst: vec![],
matches: vec![],
});
}
Ok(self.space.as_mut().unwrap())
}
}
/// A simple layer of abstraction over either a match or a contextual line
/// reported by the searcher.
///
/// In particular, this provides an API that unions the `SinkMatch` and
/// `SinkContext` types while also exposing a list of all individual match
/// locations.
///
/// While this serves as a convenient mechanism to abstract over `SinkMatch`
/// and `SinkContext`, this also provides a way to abstract over replacements.
/// Namely, after a replacement, a `Sunk` value can be constructed using the
/// results of the replacement instead of the bytes reported directly by the
/// searcher.
#[derive(Debug)]
pub struct Sunk<'a> {
bytes: &'a [u8],
absolute_byte_offset: u64,
line_number: Option<u64>,
context_kind: Option<&'a SinkContextKind>,
matches: &'a [Match],
original_matches: &'a [Match],
}
impl<'a> Sunk<'a> {
pub fn empty() -> Sunk<'static> {
Sunk {
bytes: &[],
absolute_byte_offset: 0,
line_number: None,
context_kind: None,
matches: &[],
original_matches: &[],
}
}
pub fn from_sink_match(
sunk: &'a SinkMatch<'a>,
original_matches: &'a [Match],
replacement: Option<(&'a [u8], &'a [Match])>,
) -> Sunk<'a> {
let (bytes, matches) = replacement.unwrap_or_else(|| {
(sunk.bytes(), original_matches)
});
Sunk {
bytes: bytes,
absolute_byte_offset: sunk.absolute_byte_offset(),
line_number: sunk.line_number(),
context_kind: None,
matches: matches,
original_matches: original_matches,
}
}
pub fn from_sink_context(
sunk: &'a SinkContext<'a>,
original_matches: &'a [Match],
replacement: Option<(&'a [u8], &'a [Match])>,
) -> Sunk<'a> {
let (bytes, matches) = replacement.unwrap_or_else(|| {
(sunk.bytes(), original_matches)
});
Sunk {
bytes: bytes,
absolute_byte_offset: sunk.absolute_byte_offset(),
line_number: sunk.line_number(),
context_kind: Some(sunk.kind()),
matches: matches,
original_matches: original_matches,
}
}
pub fn context_kind(&self) -> Option<&'a SinkContextKind> {
self.context_kind
}
pub fn bytes(&self) -> &'a [u8] {
self.bytes
}
pub fn matches(&self) -> &'a [Match] {
self.matches
}
pub fn original_matches(&self) -> &'a [Match] {
self.original_matches
}
pub fn lines(&self, line_term: u8) -> LineIter<'a> {
LineIter::new(line_term, self.bytes())
}
pub fn absolute_byte_offset(&self) -> u64 {
self.absolute_byte_offset
}
pub fn line_number(&self) -> Option<u64> {
self.line_number
}
}
/// A simple encapsulation of a file path used by a printer.
///
/// This represents any transforms that we might want to perform on the path,
/// such as converting it to valid UTF-8 and/or replacing its separator with
/// something else. This allows us to amortize work if we are printing the
/// file path for every match.
///
/// In the common case, no transformation is needed, which lets us avoid the
/// allocation. Typically, only Windows requires a transform, since we can't
/// access the raw bytes of a path directly and first need to lossily convert
/// to UTF-8. Windows is also typically where the path separator replacement
/// is used, e.g., in cygwin environments to use `/` instead of `\`.
///
/// Users of this type are expected to construct it from a normal `Path`
/// found in the standard library. It can then be written to any `io::Write`
/// implementation using the `as_bytes` method. This achieves platform
/// portability with a small cost: on Windows, paths that are not valid UTF-16
/// will not roundtrip correctly.
#[derive(Clone, Debug)]
pub struct PrinterPath<'a>(Cow<'a, [u8]>);
impl<'a> PrinterPath<'a> {
/// Create a new path suitable for printing.
pub fn new(path: &'a Path) -> PrinterPath<'a> {
PrinterPath::new_impl(path)
}
#[cfg(unix)]
fn new_impl(path: &'a Path) -> PrinterPath<'a> {
use std::os::unix::ffi::OsStrExt;
PrinterPath(Cow::Borrowed(path.as_os_str().as_bytes()))
}
#[cfg(not(unix))]
fn new_impl(path: &'a Path) -> PrinterPath<'a> {
PrinterPath(match path.to_string_lossy() {
Cow::Owned(path) => Cow::Owned(path.into_bytes()),
Cow::Borrowed(path) => Cow::Borrowed(path.as_bytes()),
})
}
/// Create a new printer path from the given path which can be efficiently
/// written to a writer without allocation.
///
/// If the given separator is present, then any separators in `path` are
/// replaced with it.
pub fn with_separator(path: &'a Path, sep: Option<u8>) -> PrinterPath<'a> {
let mut ppath = PrinterPath::new(path);
if let Some(sep) = sep {
ppath.replace_separator(sep);
}
ppath
}
/// Replace the path separator in this path with the given separator
/// and do it in place. On Windows, both `/` and `\` are treated as
/// path separators that are both replaced by `new_sep`. In all other
/// environments, only `/` is treated as a path separator.
fn replace_separator(&mut self, new_sep: u8) {
let transformed_path: Vec<_> = self.as_bytes().iter().map(|&b| {
if b == b'/' || (cfg!(windows) && b == b'\\') {
new_sep
} else {
b
}
}).collect();
self.0 = Cow::Owned(transformed_path);
}
/// Return the raw bytes for this path.
pub fn as_bytes(&self) -> &[u8] {
&*self.0
}
}
/// A type that provides "nicer" Display and Serialize impls for
/// std::time::Duration. The serialization format should actually be compatible
/// with the Deserialize impl for std::time::Duration, since this type only
/// adds new fields.
#[derive(Clone, Copy, Debug, Default, PartialEq, Eq)]
pub struct NiceDuration(pub time::Duration);
impl fmt::Display for NiceDuration {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{:0.6}s", self.fractional_seconds())
}
}
impl NiceDuration {
/// Returns the number of seconds in this duration in fraction form.
/// The number to the left of the decimal point is the number of seconds,
/// and the number to the right is the number of milliseconds.
fn fractional_seconds(&self) -> f64 {
let fractional = (self.0.subsec_nanos() as f64) / 1_000_000_000.0;
self.0.as_secs() as f64 + fractional
}
}
#[cfg(feature = "serde1")]
impl Serialize for NiceDuration {
fn serialize<S: Serializer>(&self, ser: S) -> Result<S::Ok, S::Error> {
use serde::ser::SerializeStruct;
let mut state = ser.serialize_struct("Duration", 2)?;
state.serialize_field("secs", &self.0.as_secs())?;
state.serialize_field("nanos", &self.0.subsec_nanos())?;
state.serialize_field("human", &format!("{}", self))?;
state.end()
}
}
/// Trim prefix ASCII spaces from the given slice and return the corresponding
/// range.
///
/// This stops trimming a prefix as soon as it sees non-whitespace or a line
/// terminator.
pub fn trim_ascii_prefix_range(
line_term: LineTerminator,
slice: &[u8],
range: Match,
) -> Match {
fn is_space(b: u8) -> bool {
match b {
b'\t' | b'\n' | b'\x0B' | b'\x0C' | b'\r' | b' ' => true,
_ => false,
}
}
let count = slice[range]
.iter()
.take_while(|&&b| -> bool {
is_space(b) && !line_term.as_bytes().contains(&b)
})
.count();
range.with_start(range.start() + count)
}
/// Trim prefix ASCII spaces from the given slice and return the corresponding
/// sub-slice.
pub fn trim_ascii_prefix(line_term: LineTerminator, slice: &[u8]) -> &[u8] {
let range = trim_ascii_prefix_range(
line_term,
slice,
Match::new(0, slice.len()),
);
&slice[range]
}

21
grep-regex/Cargo.toml Normal file
View File

@ -0,0 +1,21 @@
[package]
name = "grep-regex"
version = "0.0.1" #:version
authors = ["Andrew Gallant <jamslam@gmail.com>"]
description = """
Use Rust's regex library with the 'grep' crate.
"""
documentation = "https://docs.rs/grep-regex"
homepage = "https://github.com/BurntSushi/ripgrep"
repository = "https://github.com/BurntSushi/ripgrep"
readme = "README.md"
keywords = ["regex", "grep", "search", "pattern", "line"]
license = "Unlicense/MIT"
[dependencies]
log = "0.4"
grep-matcher = { version = "0.0.1", path = "../grep-matcher" }
regex = "1"
regex-syntax = "0.6"
thread_local = "0.3.5"
utf8-ranges = "1"

21
grep-regex/LICENSE-MIT Normal file
View File

@ -0,0 +1,21 @@
The MIT License (MIT)
Copyright (c) 2015 Andrew Gallant
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

4
grep-regex/README.md Normal file
View File

@ -0,0 +1,4 @@
grep
----
This is a *library* that provides grep-style line-by-line regex searching (with
comparable performance to `grep` itself).

24
grep-regex/UNLICENSE Normal file
View File

@ -0,0 +1,24 @@
This is free and unencumbered software released into the public domain.
Anyone is free to copy, modify, publish, use, compile, sell, or
distribute this software, either in source code form or as a compiled
binary, for any purpose, commercial or non-commercial, and by any
means.
In jurisdictions that recognize copyright laws, the author or authors
of this software dedicate any and all copyright interest in the
software to the public domain. We make this dedication for the benefit
of the public at large and to the detriment of our heirs and
successors. We intend this dedication to be an overt act of
relinquishment in perpetuity of all present and future rights to this
software under copyright law.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
For more information, please refer to <http://unlicense.org/>

263
grep-regex/src/ast.rs Normal file
View File

@ -0,0 +1,263 @@
use regex_syntax::ast::{self, Ast};
use regex_syntax::ast::parse::Parser;
/// The results of analyzing AST of a regular expression (e.g., for supporting
/// smart case).
#[derive(Clone, Debug)]
pub struct AstAnalysis {
/// True if and only if a literal uppercase character occurs in the regex.
any_uppercase: bool,
/// True if and only if the regex contains any literal at all.
any_literal: bool,
/// True if and only if the regex consists entirely of a literal and no
/// other special regex characters.
all_verbatim_literal: bool,
}
impl AstAnalysis {
/// Returns a `AstAnalysis` value by doing analysis on the AST of `pattern`.
///
/// If `pattern` is not a valid regular expression, then `None` is
/// returned.
#[allow(dead_code)]
pub fn from_pattern(pattern: &str) -> Option<AstAnalysis> {
Parser::new()
.parse(pattern)
.map(|ast| AstAnalysis::from_ast(&ast))
.ok()
}
/// Perform an AST analysis given the AST.
pub fn from_ast(ast: &Ast) -> AstAnalysis {
let mut analysis = AstAnalysis::new();
analysis.from_ast_impl(ast);
analysis
}
/// Returns true if and only if a literal uppercase character occurs in
/// the pattern.
///
/// For example, a pattern like `\pL` contains no uppercase literals,
/// even though `L` is uppercase and the `\pL` class contains uppercase
/// characters.
pub fn any_uppercase(&self) -> bool {
self.any_uppercase
}
/// Returns true if and only if the regex contains any literal at all.
///
/// For example, a pattern like `\pL` reports `false`, but a pattern like
/// `\pLfoo` reports `true`.
pub fn any_literal(&self) -> bool {
self.any_literal
}
/// Returns true if and only if the entire pattern is a verbatim literal
/// with no special meta characters.
///
/// When this is true, then the pattern satisfies the following law:
/// `escape(pattern) == pattern`. Notable examples where this returns
/// `false` include patterns like `a\u0061` even though `\u0061` is just
/// a literal `a`.
///
/// The purpose of this flag is to determine whether the patterns can be
/// given to non-regex substring search algorithms as-is.
#[allow(dead_code)]
pub fn all_verbatim_literal(&self) -> bool {
self.all_verbatim_literal
}
/// Creates a new `AstAnalysis` value with an initial configuration.
fn new() -> AstAnalysis {
AstAnalysis {
any_uppercase: false,
any_literal: false,
all_verbatim_literal: true,
}
}
fn from_ast_impl(&mut self, ast: &Ast) {
if self.done() {
return;
}
match *ast {
Ast::Empty(_) => {}
Ast::Flags(_)
| Ast::Dot(_)
| Ast::Assertion(_)
| Ast::Class(ast::Class::Unicode(_))
| Ast::Class(ast::Class::Perl(_)) => {
self.all_verbatim_literal = false;
}
Ast::Literal(ref x) => {
self.from_ast_literal(x);
}
Ast::Class(ast::Class::Bracketed(ref x)) => {
self.all_verbatim_literal = false;
self.from_ast_class_set(&x.kind);
}
Ast::Repetition(ref x) => {
self.all_verbatim_literal = false;
self.from_ast_impl(&x.ast);
}
Ast::Group(ref x) => {
self.all_verbatim_literal = false;
self.from_ast_impl(&x.ast);
}
Ast::Alternation(ref alt) => {
self.all_verbatim_literal = false;
for x in &alt.asts {
self.from_ast_impl(x);
}
}
Ast::Concat(ref alt) => {
for x in &alt.asts {
self.from_ast_impl(x);
}
}
}
}
fn from_ast_class_set(&mut self, ast: &ast::ClassSet) {
if self.done() {
return;
}
match *ast {
ast::ClassSet::Item(ref item) => {
self.from_ast_class_set_item(item);
}
ast::ClassSet::BinaryOp(ref x) => {
self.from_ast_class_set(&x.lhs);
self.from_ast_class_set(&x.rhs);
}
}
}
fn from_ast_class_set_item(&mut self, ast: &ast::ClassSetItem) {
if self.done() {
return;
}
match *ast {
ast::ClassSetItem::Empty(_)
| ast::ClassSetItem::Ascii(_)
| ast::ClassSetItem::Unicode(_)
| ast::ClassSetItem::Perl(_) => {}
ast::ClassSetItem::Literal(ref x) => {
self.from_ast_literal(x);
}
ast::ClassSetItem::Range(ref x) => {
self.from_ast_literal(&x.start);
self.from_ast_literal(&x.end);
}
ast::ClassSetItem::Bracketed(ref x) => {
self.from_ast_class_set(&x.kind);
}
ast::ClassSetItem::Union(ref union) => {
for x in &union.items {
self.from_ast_class_set_item(x);
}
}
}
}
fn from_ast_literal(&mut self, ast: &ast::Literal) {
if ast.kind != ast::LiteralKind::Verbatim {
self.all_verbatim_literal = false;
}
self.any_literal = true;
self.any_uppercase = self.any_uppercase || ast.c.is_uppercase();
}
/// Returns true if and only if the attributes can never change no matter
/// what other AST it might see.
fn done(&self) -> bool {
self.any_uppercase && self.any_literal && !self.all_verbatim_literal
}
}
#[cfg(test)]
mod tests {
use super::*;
fn analysis(pattern: &str) -> AstAnalysis {
AstAnalysis::from_pattern(pattern).unwrap()
}
#[test]
fn various() {
let x = analysis("");
assert!(!x.any_uppercase);
assert!(!x.any_literal);
assert!(x.all_verbatim_literal);
let x = analysis("foo");
assert!(!x.any_uppercase);
assert!(x.any_literal);
assert!(x.all_verbatim_literal);
let x = analysis("Foo");
assert!(x.any_uppercase);
assert!(x.any_literal);
assert!(x.all_verbatim_literal);
let x = analysis("foO");
assert!(x.any_uppercase);
assert!(x.any_literal);
assert!(x.all_verbatim_literal);
let x = analysis(r"foo\\");
assert!(!x.any_uppercase);
assert!(x.any_literal);
assert!(!x.all_verbatim_literal);
let x = analysis(r"foo\w");
assert!(!x.any_uppercase);
assert!(x.any_literal);
assert!(!x.all_verbatim_literal);
let x = analysis(r"foo\S");
assert!(!x.any_uppercase);
assert!(x.any_literal);
assert!(!x.all_verbatim_literal);
let x = analysis(r"foo\p{Ll}");
assert!(!x.any_uppercase);
assert!(x.any_literal);
assert!(!x.all_verbatim_literal);
let x = analysis(r"foo[a-z]");
assert!(!x.any_uppercase);
assert!(x.any_literal);
assert!(!x.all_verbatim_literal);
let x = analysis(r"foo[A-Z]");
assert!(x.any_uppercase);
assert!(x.any_literal);
assert!(!x.all_verbatim_literal);
let x = analysis(r"foo[\S\t]");
assert!(!x.any_uppercase);
assert!(x.any_literal);
assert!(!x.all_verbatim_literal);
let x = analysis(r"foo\\S");
assert!(x.any_uppercase);
assert!(x.any_literal);
assert!(!x.all_verbatim_literal);
let x = analysis(r"\p{Ll}");
assert!(!x.any_uppercase);
assert!(!x.any_literal);
assert!(!x.all_verbatim_literal);
let x = analysis(r"aBc\w");
assert!(x.any_uppercase);
assert!(x.any_literal);
assert!(!x.all_verbatim_literal);
let x = analysis(r"a\u0061");
assert!(!x.any_uppercase);
assert!(x.any_literal);
assert!(!x.all_verbatim_literal);
}
}

280
grep-regex/src/config.rs Normal file
View File

@ -0,0 +1,280 @@
use grep_matcher::{ByteSet, LineTerminator};
use regex::bytes::{Regex, RegexBuilder};
use regex_syntax::ast::{self, Ast};
use regex_syntax::hir::Hir;
use ast::AstAnalysis;
use crlf::crlfify;
use error::Error;
use literal::LiteralSets;
use non_matching::non_matching_bytes;
use strip::strip_from_match;
/// Config represents the configuration of a regex matcher in this crate.
/// The configuration is itself a rough combination of the knobs found in
/// the `regex` crate itself, along with additional `grep-matcher` specific
/// options.
///
/// The configuration can be used to build a "configured" HIR expression. A
/// configured HIR expression is an HIR expression that is aware of the
/// configuration which generated it, and provides transformation on that HIR
/// such that the configuration is preserved.
#[derive(Clone, Debug)]
pub struct Config {
pub case_insensitive: bool,
pub case_smart: bool,
pub multi_line: bool,
pub dot_matches_new_line: bool,
pub swap_greed: bool,
pub ignore_whitespace: bool,
pub unicode: bool,
pub octal: bool,
pub size_limit: usize,
pub dfa_size_limit: usize,
pub nest_limit: u32,
pub line_terminator: Option<LineTerminator>,
pub crlf: bool,
pub word: bool,
}
impl Default for Config {
fn default() -> Config {
Config {
case_insensitive: false,
case_smart: false,
multi_line: false,
dot_matches_new_line: false,
swap_greed: false,
ignore_whitespace: false,
unicode: true,
octal: false,
// These size limits are much bigger than what's in the regex
// crate.
size_limit: 100 * (1<<20),
dfa_size_limit: 1000 * (1<<20),
nest_limit: 250,
line_terminator: None,
crlf: false,
word: false,
}
}
}
impl Config {
/// Parse the given pattern and returned its HIR expression along with
/// the current configuration.
///
/// If there was a problem parsing the given expression then an error
/// is returned.
pub fn hir(&self, pattern: &str) -> Result<ConfiguredHIR, Error> {
let analysis = self.analysis(pattern)?;
let expr = ::regex_syntax::ParserBuilder::new()
.nest_limit(self.nest_limit)
.octal(self.octal)
.allow_invalid_utf8(true)
.ignore_whitespace(self.ignore_whitespace)
.case_insensitive(self.is_case_insensitive(&analysis)?)
.multi_line(self.multi_line)
.dot_matches_new_line(self.dot_matches_new_line)
.swap_greed(self.swap_greed)
.unicode(self.unicode)
.build()
.parse(pattern)
.map_err(Error::regex)?;
let expr = match self.line_terminator {
None => expr,
Some(line_term) => strip_from_match(expr, line_term)?,
};
Ok(ConfiguredHIR {
original: pattern.to_string(),
config: self.clone(),
analysis: analysis,
// If CRLF mode is enabled, replace `$` with `(?:\r?$)`.
expr: if self.crlf { crlfify(expr) } else { expr },
})
}
/// Accounting for the `smart_case` config knob, return true if and only if
/// this pattern should be matched case insensitively.
fn is_case_insensitive(
&self,
analysis: &AstAnalysis,
) -> Result<bool, Error> {
if self.case_insensitive {
return Ok(true);
}
if !self.case_smart {
return Ok(false);
}
Ok(analysis.any_literal() && !analysis.any_uppercase())
}
/// Perform analysis on the AST of this pattern.
///
/// This returns an error if the given pattern failed to parse.
fn analysis(&self, pattern: &str) -> Result<AstAnalysis, Error> {
Ok(AstAnalysis::from_ast(&self.ast(pattern)?))
}
/// Parse the given pattern into its abstract syntax.
///
/// This returns an error if the given pattern failed to parse.
fn ast(&self, pattern: &str) -> Result<Ast, Error> {
ast::parse::ParserBuilder::new()
.nest_limit(self.nest_limit)
.octal(self.octal)
.ignore_whitespace(self.ignore_whitespace)
.build()
.parse(pattern)
.map_err(Error::regex)
}
}
/// A "configured" HIR expression, which is aware of the configuration which
/// produced this HIR.
///
/// Since the configuration is tracked, values with this type can be
/// transformed into other HIR expressions (or regular expressions) in a way
/// that preserves the configuration. For example, the `fast_line_regex`
/// method will apply literal extraction to the inner HIR and use that to build
/// a new regex that matches the extracted literals in a way that is
/// consistent with the configuration that produced this HIR. For example, the
/// size limits set on the configured HIR will be propagated out to any
/// subsequently constructed HIR or regular expression.
#[derive(Clone, Debug)]
pub struct ConfiguredHIR {
original: String,
config: Config,
analysis: AstAnalysis,
expr: Hir,
}
impl ConfiguredHIR {
/// Return the configuration for this HIR expression.
pub fn config(&self) -> &Config {
&self.config
}
/// Compute the set of non-matching bytes for this HIR expression.
pub fn non_matching_bytes(&self) -> ByteSet {
non_matching_bytes(&self.expr)
}
/// Builds a regular expression from this HIR expression.
pub fn regex(&self) -> Result<Regex, Error> {
self.pattern_to_regex(&self.expr.to_string())
}
/// Applies the given function to the concrete syntax of this HIR and then
/// generates a new HIR based on the result of the function in a way that
/// preserves the configuration.
///
/// For example, this can be used to wrap a user provided regular
/// expression with additional semantics. e.g., See the `WordMatcher`.
pub fn with_pattern<F: FnMut(&str) -> String>(
&self,
mut f: F,
) -> Result<ConfiguredHIR, Error>
{
self.pattern_to_hir(&f(&self.expr.to_string()))
}
/// If the current configuration has a line terminator set and if useful
/// literals could be extracted, then a regular expression matching those
/// literals is returned. If no line terminator is set, then `None` is
/// returned.
///
/// If compiling the resulting regular expression failed, then an error
/// is returned.
///
/// This method only returns something when a line terminator is set
/// because matches from this regex are generally candidates that must be
/// confirmed before reporting a match. When performing a line oriented
/// search, confirmation is easy: just extend the candidate match to its
/// respective line boundaries and then re-search that line for a full
/// match. This only works when the line terminator is set because the line
/// terminator setting guarantees that the regex itself can never match
/// through the line terminator byte.
pub fn fast_line_regex(&self) -> Result<Option<Regex>, Error> {
if self.config.line_terminator.is_none() {
return Ok(None);
}
match LiteralSets::new(&self.expr).one_regex() {
None => Ok(None),
/*
if !self.config.crlf {
return Ok(None);
}
// If we're trying to support CRLF, then our "fast" line
// oriented regex needs `$` to be able to match at a `\r\n`
// boundary. The regex engine doesn't support this, so we
// "fake" it by replacing `$` with `(?:\r?$)`. Since the
// fast line regex is only used to detect lines, this never
// infects match offsets. Namely, the regex generated via
// `self.expr` is matched against lines with line terminators
// stripped.
let pattern = crlfify(self.expr.clone()).to_string();
self.pattern_to_regex(&pattern).map(Some)
*/
Some(pattern) => self.pattern_to_regex(&pattern).map(Some),
}
}
/// Create a regex from the given pattern using this HIR's configuration.
fn pattern_to_regex(&self, pattern: &str) -> Result<Regex, Error> {
// The settings we explicitly set here are intentionally a subset
// of the settings we have. The key point here is that our HIR
// expression is computed with the settings in mind, such that setting
// them here could actually lead to unintended behavior. For example,
// consider the pattern `(?U)a+`. This will get folded into the HIR
// as a non-greedy repetition operator which will in turn get printed
// to the concrete syntax as `a+?`, which is correct. But if we
// set the `swap_greed` option again, then we'll wind up with `(?U)a+?`
// which is equal to `a+` which is not the same as what we were given.
//
// We also don't need to apply `case_insensitive` since this gets
// folded into the HIR and would just cause us to do redundant work.
//
// Finally, we don't need to set `ignore_whitespace` since the concrete
// syntax emitted by the HIR printer never needs it.
//
// We set the rest of the options. Some of them are important, such as
// the size limit, and some of them are necessary to preserve the
// intention of the original pattern. For example, the Unicode flag
// will impact how the WordMatcher functions, namely, whether its
// word boundaries are Unicode aware or not.
RegexBuilder::new(&pattern)
.nest_limit(self.config.nest_limit)
.octal(self.config.octal)
.multi_line(self.config.multi_line)
.dot_matches_new_line(self.config.dot_matches_new_line)
.unicode(self.config.unicode)
.size_limit(self.config.size_limit)
.dfa_size_limit(self.config.dfa_size_limit)
.build()
.map_err(Error::regex)
}
/// Create an HIR expression from the given pattern using this HIR's
/// configuration.
fn pattern_to_hir(&self, pattern: &str) -> Result<ConfiguredHIR, Error> {
// See `pattern_to_regex` comment for explanation of why we only set
// a subset of knobs here. e.g., `swap_greed` is explicitly left out.
let expr = ::regex_syntax::ParserBuilder::new()
.nest_limit(self.config.nest_limit)
.octal(self.config.octal)
.allow_invalid_utf8(true)
.multi_line(self.config.multi_line)
.dot_matches_new_line(self.config.dot_matches_new_line)
.unicode(self.config.unicode)
.build()
.parse(pattern)
.map_err(Error::regex)?;
Ok(ConfiguredHIR {
original: self.original.clone(),
config: self.config.clone(),
analysis: self.analysis.clone(),
expr: expr,
})
}
}

83
grep-regex/src/crlf.rs Normal file
View File

@ -0,0 +1,83 @@
use regex_syntax::hir::{self, Hir, HirKind};
/// Substitutes all occurrences of multi-line enabled `$` with `(?:\r?$)`.
///
/// This does not preserve the exact semantics of the given expression,
/// however, it does have the useful property that anything that matched the
/// given expression will also match the returned expression. The difference is
/// that the returned expression can match possibly other things as well.
///
/// The principle reason why we do this is because the underlying regex engine
/// doesn't support CRLF aware `$` look-around. It's planned to fix it at that
/// level, but we perform this kludge in the mean time.
///
/// Note that while the match preserving semantics are nice and neat, the
/// match position semantics are quite a bit messier. Namely, `$` only ever
/// matches the position between characters where as `\r??` can match a
/// character and change the offset. This is regretable, but works out pretty
/// nicely in most cases, especially when a match is limited to a single line.
pub fn crlfify(expr: Hir) -> Hir {
match expr.into_kind() {
HirKind::Anchor(hir::Anchor::EndLine) => {
let concat = Hir::concat(vec![
Hir::repetition(hir::Repetition {
kind: hir::RepetitionKind::ZeroOrOne,
greedy: false,
hir: Box::new(Hir::literal(hir::Literal::Unicode('\r'))),
}),
Hir::anchor(hir::Anchor::EndLine),
]);
Hir::group(hir::Group {
kind: hir::GroupKind::NonCapturing,
hir: Box::new(concat),
})
}
HirKind::Empty => Hir::empty(),
HirKind::Literal(x) => Hir::literal(x),
HirKind::Class(x) => Hir::class(x),
HirKind::Anchor(x) => Hir::anchor(x),
HirKind::WordBoundary(x) => Hir::word_boundary(x),
HirKind::Repetition(mut x) => {
x.hir = Box::new(crlfify(*x.hir));
Hir::repetition(x)
}
HirKind::Group(mut x) => {
x.hir = Box::new(crlfify(*x.hir));
Hir::group(x)
}
HirKind::Concat(xs) => {
Hir::concat(xs.into_iter().map(crlfify).collect())
}
HirKind::Alternation(xs) => {
Hir::alternation(xs.into_iter().map(crlfify).collect())
}
}
}
#[cfg(test)]
mod tests {
use regex_syntax::Parser;
use super::crlfify;
fn roundtrip(pattern: &str) -> String {
let expr1 = Parser::new().parse(pattern).unwrap();
let expr2 = crlfify(expr1);
expr2.to_string()
}
#[test]
fn various() {
assert_eq!(roundtrip(r"(?m)$"), "(?:\r??(?m:$))");
assert_eq!(roundtrip(r"(?m)$$"), "(?:\r??(?m:$))(?:\r??(?m:$))");
assert_eq!(
roundtrip(r"(?m)(?:foo$|bar$)"),
"(?:foo(?:\r??(?m:$))|bar(?:\r??(?m:$)))"
);
assert_eq!(roundtrip(r"(?m)$a"), "(?:\r??(?m:$))a");
// Not a multiline `$`, so no crlfifying occurs.
assert_eq!(roundtrip(r"$"), "\\z");
// It's a literal, derp.
assert_eq!(roundtrip(r"\$"), "\\$");
}
}

88
grep-regex/src/error.rs Normal file
View File

@ -0,0 +1,88 @@
use std::error;
use std::fmt;
use util;
/// An error that can occur in this crate.
///
/// Generally, this error corresponds to problems building a regular
/// expression, whether it's in parsing, compilation or a problem with
/// guaranteeing a configured optimization.
#[derive(Clone, Debug)]
pub struct Error {
kind: ErrorKind,
}
impl Error {
pub(crate) fn new(kind: ErrorKind) -> Error {
Error { kind }
}
pub(crate) fn regex<E: error::Error>(err: E) -> Error {
Error { kind: ErrorKind::Regex(err.to_string()) }
}
/// Return the kind of this error.
pub fn kind(&self) -> &ErrorKind {
&self.kind
}
}
/// The kind of an error that can occur.
#[derive(Clone, Debug)]
pub enum ErrorKind {
/// An error that occurred as a result of parsing a regular expression.
/// This can be a syntax error or an error that results from attempting to
/// compile a regular expression that is too big.
///
/// The string here is the underlying error converted to a string.
Regex(String),
/// An error that occurs when a building a regex that isn't permitted to
/// match a line terminator. In general, building the regex will do its
/// best to make matching a line terminator impossible (e.g., by removing
/// `\n` from the `\s` character class), but if the regex contains a
/// `\n` literal, then there is no reasonable choice that can be made and
/// therefore an error is reported.
///
/// The string is the literal sequence found in the regex that is not
/// allowed.
NotAllowed(String),
/// This error occurs when a non-ASCII line terminator was provided.
///
/// The invalid byte is included in this error.
InvalidLineTerminator(u8),
/// Hints that destructuring should not be exhaustive.
///
/// This enum may grow additional variants, so this makes sure clients
/// don't count on exhaustive matching. (Otherwise, adding a new variant
/// could break existing code.)
#[doc(hidden)]
__Nonexhaustive,
}
impl error::Error for Error {
fn description(&self) -> &str {
match self.kind {
ErrorKind::Regex(_) => "regex error",
ErrorKind::NotAllowed(_) => "literal not allowed",
ErrorKind::InvalidLineTerminator(_) => "invalid line terminator",
ErrorKind::__Nonexhaustive => unreachable!(),
}
}
}
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self.kind {
ErrorKind::Regex(ref s) => write!(f, "{}", s),
ErrorKind::NotAllowed(ref lit) => {
write!(f, "the literal '{:?}' is not allowed in a regex", lit)
}
ErrorKind::InvalidLineTerminator(byte) => {
let x = util::show_bytes(&[byte]);
write!(f, "line terminators must be ASCII, but '{}' is not", x)
}
ErrorKind::__Nonexhaustive => unreachable!(),
}
}
}

27
grep-regex/src/lib.rs Normal file
View File

@ -0,0 +1,27 @@
/*!
An implementation of `grep-matcher`'s `Matcher` trait for Rust's regex engine.
*/
#![deny(missing_docs)]
extern crate grep_matcher;
#[macro_use]
extern crate log;
extern crate regex;
extern crate regex_syntax;
extern crate thread_local;
extern crate utf8_ranges;
pub use error::{Error, ErrorKind};
pub use matcher::{RegexCaptures, RegexMatcher, RegexMatcherBuilder};
mod ast;
mod config;
mod crlf;
mod error;
mod literal;
mod matcher;
mod non_matching;
mod strip;
mod util;
mod word;

304
grep-regex/src/literal.rs Normal file
View File

@ -0,0 +1,304 @@
/*
This module is responsible for extracting *inner* literals out of the AST of a
regular expression. Normally this is the job of the regex engine itself, but
the regex engine doesn't look for inner literals. Since we're doing line based
searching, we can use them, so we need to do it ourselves.
*/
use std::cmp;
use regex_syntax::hir::{self, Hir, HirKind};
use regex_syntax::hir::literal::{Literal, Literals};
use util;
/// Represents prefix, suffix and inner "required" literals for a regular
/// expression.
///
/// Prefixes and suffixes are detected using regex-syntax. The inner required
/// literals are detected using something custom (but based on the code in
/// regex-syntax).
#[derive(Clone, Debug)]
pub struct LiteralSets {
/// A set of prefix literals.
prefixes: Literals,
/// A set of suffix literals.
suffixes: Literals,
/// A set of literals such that at least one of them must appear in every
/// match. A literal in this set may be neither a prefix nor a suffix.
required: Literals,
}
impl LiteralSets {
/// Create a set of literals from the given HIR expression.
pub fn new(expr: &Hir) -> LiteralSets {
let mut required = Literals::empty();
union_required(expr, &mut required);
LiteralSets {
prefixes: Literals::prefixes(expr),
suffixes: Literals::suffixes(expr),
required: required,
}
}
/// If it is deemed advantageuous to do so (via various suspicious
/// heuristics), this will return a single regular expression pattern that
/// matches a subset of the language matched by the regular expression that
/// generated these literal sets. The idea here is that the pattern
/// returned by this method is much cheaper to search for. i.e., It is
/// usually a single literal or an alternation of literals.
pub fn one_regex(&self) -> Option<String> {
// TODO: The logic in this function is basically inscrutable. It grew
// organically in the old grep 0.1 crate. Ideally, it would be
// re-worked. In fact, the entire inner literal extraction should be
// re-worked. Actually, most of regex-syntax's literal extraction
// should also be re-worked. Alas... only so much time in the day.
if self.prefixes.all_complete() && !self.prefixes.is_empty() {
debug!("literal prefixes detected: {:?}", self.prefixes);
// When this is true, the regex engine will do a literal scan,
// so we don't need to return anything.
return None;
}
// Out of inner required literals, prefixes and suffixes, which one
// is the longest? We pick the longest to do fast literal scan under
// the assumption that a longer literal will have a lower false
// positive rate.
let pre_lcp = self.prefixes.longest_common_prefix();
let pre_lcs = self.prefixes.longest_common_suffix();
let suf_lcp = self.suffixes.longest_common_prefix();
let suf_lcs = self.suffixes.longest_common_suffix();
let req_lits = self.required.literals();
let req = match req_lits.iter().max_by_key(|lit| lit.len()) {
None => &[],
Some(req) => &***req,
};
let mut lit = pre_lcp;
if pre_lcs.len() > lit.len() {
lit = pre_lcs;
}
if suf_lcp.len() > lit.len() {
lit = suf_lcp;
}
if suf_lcs.len() > lit.len() {
lit = suf_lcs;
}
if req_lits.len() == 1 && req.len() > lit.len() {
lit = req;
}
// Special case: if we detected an alternation of inner required
// literals and its longest literal is bigger than the longest
// prefix/suffix, then choose the alternation. In practice, this
// helps with case insensitive matching, which can generate lots of
// inner required literals.
let any_empty = req_lits.iter().any(|lit| lit.is_empty());
if req.len() > lit.len() && req_lits.len() > 1 && !any_empty {
debug!("required literals found: {:?}", req_lits);
let alts: Vec<String> = req_lits
.into_iter()
.map(|x| util::bytes_to_regex(x))
.collect();
// We're matching raw bytes, so disable Unicode mode.
Some(format!("(?-u:{})", alts.join("|")))
} else if lit.is_empty() {
None
} else {
debug!("required literal found: {:?}", util::show_bytes(lit));
Some(format!("(?-u:{})", util::bytes_to_regex(&lit)))
}
}
}
fn union_required(expr: &Hir, lits: &mut Literals) {
match *expr.kind() {
HirKind::Literal(hir::Literal::Unicode(c)) => {
let mut buf = [0u8; 4];
lits.cross_add(c.encode_utf8(&mut buf).as_bytes());
}
HirKind::Literal(hir::Literal::Byte(b)) => {
lits.cross_add(&[b]);
}
HirKind::Class(hir::Class::Unicode(ref cls)) => {
if count_unicode_class(cls) >= 5 || !lits.add_char_class(cls) {
lits.cut();
}
}
HirKind::Class(hir::Class::Bytes(ref cls)) => {
if count_byte_class(cls) >= 5 || !lits.add_byte_class(cls) {
lits.cut();
}
}
HirKind::Group(hir::Group { ref hir, .. }) => {
union_required(&**hir, lits);
}
HirKind::Repetition(ref x) => {
match x.kind {
hir::RepetitionKind::ZeroOrOne => lits.cut(),
hir::RepetitionKind::ZeroOrMore => lits.cut(),
hir::RepetitionKind::OneOrMore => {
union_required(&x.hir, lits);
lits.cut();
}
hir::RepetitionKind::Range(ref rng) => {
let (min, max) = match *rng {
hir::RepetitionRange::Exactly(m) => (m, Some(m)),
hir::RepetitionRange::AtLeast(m) => (m, None),
hir::RepetitionRange::Bounded(m, n) => (m, Some(n)),
};
repeat_range_literals(
&x.hir, min, max, x.greedy, lits, union_required);
}
}
}
HirKind::Concat(ref es) if es.is_empty() => {}
HirKind::Concat(ref es) if es.len() == 1 => {
union_required(&es[0], lits)
}
HirKind::Concat(ref es) => {
for e in es {
let mut lits2 = lits.to_empty();
union_required(e, &mut lits2);
if lits2.is_empty() {
lits.cut();
continue;
}
if lits2.contains_empty() {
lits.cut();
}
if !lits.cross_product(&lits2) {
// If this expression couldn't yield any literal that
// could be extended, then we need to quit. Since we're
// short-circuiting, we also need to freeze every member.
lits.cut();
break;
}
}
}
HirKind::Alternation(ref es) => {
alternate_literals(es, lits, union_required);
}
_ => lits.cut(),
}
}
fn repeat_range_literals<F: FnMut(&Hir, &mut Literals)>(
e: &Hir,
min: u32,
max: Option<u32>,
_greedy: bool,
lits: &mut Literals,
mut f: F,
) {
if min == 0 {
// This is a bit conservative. If `max` is set, then we could
// treat this as a finite set of alternations. For now, we
// just treat it as `e*`.
lits.cut();
} else {
let n = cmp::min(lits.limit_size(), min as usize);
// We only extract literals from a single repetition, even though
// we could do more. e.g., `a{3}` will have `a` extracted instead of
// `aaa`. The reason is that inner literal extraction can't be unioned
// across repetitions. e.g., extracting `foofoofoo` from `(\w+foo){3}`
// is wrong.
f(e, lits);
if n < min as usize {
lits.cut();
}
if max.map_or(true, |max| min < max) {
lits.cut();
}
}
}
fn alternate_literals<F: FnMut(&Hir, &mut Literals)>(
es: &[Hir],
lits: &mut Literals,
mut f: F,
) {
let mut lits2 = lits.to_empty();
for e in es {
let mut lits3 = lits.to_empty();
lits3.set_limit_size(lits.limit_size() / 5);
f(e, &mut lits3);
if lits3.is_empty() || !lits2.union(lits3) {
// If we couldn't find suffixes for *any* of the
// alternates, then the entire alternation has to be thrown
// away and any existing members must be frozen. Similarly,
// if the union couldn't complete, stop and freeze.
lits.cut();
return;
}
}
// All we do at the moment is look for prefixes and suffixes. If both
// are empty, then we report nothing. We should be able to do better than
// this, but we'll need something more expressive than just a "set of
// literals."
let lcp = lits2.longest_common_prefix();
let lcs = lits2.longest_common_suffix();
if !lcp.is_empty() {
lits.cross_add(lcp);
}
lits.cut();
if !lcs.is_empty() {
lits.add(Literal::empty());
lits.add(Literal::new(lcs.to_vec()));
}
}
/// Return the number of characters in the given class.
fn count_unicode_class(cls: &hir::ClassUnicode) -> u32 {
cls.iter().map(|r| 1 + (r.end() as u32 - r.start() as u32)).sum()
}
/// Return the number of bytes in the given class.
fn count_byte_class(cls: &hir::ClassBytes) -> u32 {
cls.iter().map(|r| 1 + (r.end() as u32 - r.start() as u32)).sum()
}
#[cfg(test)]
mod tests {
use regex_syntax::Parser;
use super::LiteralSets;
fn sets(pattern: &str) -> LiteralSets {
let hir = Parser::new().parse(pattern).unwrap();
LiteralSets::new(&hir)
}
fn one_regex(pattern: &str) -> Option<String> {
sets(pattern).one_regex()
}
// Put a pattern into the same format as the one returned by `one_regex`.
fn pat(pattern: &str) -> Option<String> {
Some(format!("(?-u:{})", pattern))
}
#[test]
fn various() {
// Obviously no literals.
assert!(one_regex(r"\w").is_none());
assert!(one_regex(r"\pL").is_none());
// Tantalizingly close.
assert!(one_regex(r"\w|foo").is_none());
// There's a literal, but it's better if the regex engine handles it
// internally.
assert!(one_regex(r"abc").is_none());
// Core use cases.
assert_eq!(one_regex(r"\wabc\w"), pat("abc"));
assert_eq!(one_regex(r"abc\w"), pat("abc"));
// TODO: Make these pass. We're missing some potentially big wins
// without these.
// assert_eq!(one_regex(r"\w(foo|bar|baz)"), pat("foo|bar|baz"));
// assert_eq!(one_regex(r"\w(foo|bar|baz)\w"), pat("foo|bar|baz"));
}
}

864
grep-regex/src/matcher.rs Normal file
View File

@ -0,0 +1,864 @@
use std::collections::HashMap;
use grep_matcher::{
Captures, LineMatchKind, LineTerminator, Match, Matcher, NoError, ByteSet,
};
use regex::bytes::{CaptureLocations, Regex};
use config::{Config, ConfiguredHIR};
use error::Error;
use word::WordMatcher;
/// A builder for constructing a `Matcher` using regular expressions.
///
/// This builder re-exports many of the same options found on the regex crate's
/// builder, in addition to a few other options such as smart case, word
/// matching and the ability to set a line terminator which may enable certain
/// types of optimizations.
///
/// The syntax supported is documented as part of the regex crate:
/// https://docs.rs/regex/*/regex/#syntax
#[derive(Clone, Debug)]
pub struct RegexMatcherBuilder {
config: Config,
}
impl Default for RegexMatcherBuilder {
fn default() -> RegexMatcherBuilder {
RegexMatcherBuilder::new()
}
}
impl RegexMatcherBuilder {
/// Create a new builder for configuring a regex matcher.
pub fn new() -> RegexMatcherBuilder {
RegexMatcherBuilder {
config: Config::default(),
}
}
/// Build a new matcher using the current configuration for the provided
/// pattern.
///
/// The syntax supported is documented as part of the regex crate:
/// https://docs.rs/regex/*/regex/#syntax
pub fn build(&self, pattern: &str) -> Result<RegexMatcher, Error> {
let chir = self.config.hir(pattern)?;
let fast_line_regex = chir.fast_line_regex()?;
let non_matching_bytes = chir.non_matching_bytes();
if let Some(ref re) = fast_line_regex {
trace!("extracted fast line regex: {:?}", re);
}
Ok(RegexMatcher {
config: self.config.clone(),
matcher: RegexMatcherImpl::new(&chir)?,
fast_line_regex: fast_line_regex,
non_matching_bytes: non_matching_bytes,
})
}
/// Set the value for the case insensitive (`i`) flag.
///
/// When enabled, letters in the pattern will match both upper case and
/// lower case variants.
pub fn case_insensitive(&mut self, yes: bool) -> &mut RegexMatcherBuilder {
self.config.case_insensitive = yes;
self
}
/// Whether to enable "smart case" or not.
///
/// When smart case is enabled, the builder will automatically enable
/// case insensitive matching based on how the pattern is written. Namely,
/// case insensitive mode is enabled when both of the following things
/// are true:
///
/// 1. The pattern contains at least one literal character. For example,
/// `a\w` contains a literal (`a`) but `\w` does not.
/// 2. Of the literals in the pattern, none of them are considered to be
/// uppercase according to Unicode. For example, `foo\pL` has no
/// uppercase literals but `Foo\pL` does.
pub fn case_smart(&mut self, yes: bool) -> &mut RegexMatcherBuilder {
self.config.case_smart = yes;
self
}
/// Set the value for the multi-line matching (`m`) flag.
///
/// When enabled, `^` matches the beginning of lines and `$` matches the
/// end of lines.
///
/// By default, they match beginning/end of the input.
pub fn multi_line(&mut self, yes: bool) -> &mut RegexMatcherBuilder {
self.config.multi_line = yes;
self
}
/// Set the value for the any character (`s`) flag, where in `.` matches
/// anything when `s` is set and matches anything except for new line when
/// it is not set (the default).
///
/// N.B. "matches anything" means "any byte" when Unicode is disabled and
/// means "any valid UTF-8 encoding of any Unicode scalar value" when
/// Unicode is enabled.
pub fn dot_matches_new_line(
&mut self,
yes: bool,
) -> &mut RegexMatcherBuilder {
self.config.dot_matches_new_line = yes;
self
}
/// Set the value for the greedy swap (`U`) flag.
///
/// When enabled, a pattern like `a*` is lazy (tries to find shortest
/// match) and `a*?` is greedy (tries to find longest match).
///
/// By default, `a*` is greedy and `a*?` is lazy.
pub fn swap_greed(&mut self, yes: bool) -> &mut RegexMatcherBuilder {
self.config.swap_greed = yes;
self
}
/// Set the value for the ignore whitespace (`x`) flag.
///
/// When enabled, whitespace such as new lines and spaces will be ignored
/// between expressions of the pattern, and `#` can be used to start a
/// comment until the next new line.
pub fn ignore_whitespace(
&mut self,
yes: bool,
) -> &mut RegexMatcherBuilder {
self.config.ignore_whitespace = yes;
self
}
/// Set the value for the Unicode (`u`) flag.
///
/// Enabled by default. When disabled, character classes such as `\w` only
/// match ASCII word characters instead of all Unicode word characters.
pub fn unicode(&mut self, yes: bool) -> &mut RegexMatcherBuilder {
self.config.unicode = yes;
self
}
/// Whether to support octal syntax or not.
///
/// Octal syntax is a little-known way of uttering Unicode codepoints in
/// a regular expression. For example, `a`, `\x61`, `\u0061` and
/// `\141` are all equivalent regular expressions, where the last example
/// shows octal syntax.
///
/// While supporting octal syntax isn't in and of itself a problem, it does
/// make good error messages harder. That is, in PCRE based regex engines,
/// syntax like `\0` invokes a backreference, which is explicitly
/// unsupported in Rust's regex engine. However, many users expect it to
/// be supported. Therefore, when octal support is disabled, the error
/// message will explicitly mention that backreferences aren't supported.
///
/// Octal syntax is disabled by default.
pub fn octal(&mut self, yes: bool) -> &mut RegexMatcherBuilder {
self.config.octal = yes;
self
}
/// Set the approximate size limit of the compiled regular expression.
///
/// This roughly corresponds to the number of bytes occupied by a single
/// compiled program. If the program exceeds this number, then a
/// compilation error is returned.
pub fn size_limit(&mut self, bytes: usize) -> &mut RegexMatcherBuilder {
self.config.size_limit = bytes;
self
}
/// Set the approximate size of the cache used by the DFA.
///
/// This roughly corresponds to the number of bytes that the DFA will
/// use while searching.
///
/// Note that this is a *per thread* limit. There is no way to set a global
/// limit. In particular, if a regex is used from multiple threads
/// simultaneously, then each thread may use up to the number of bytes
/// specified here.
pub fn dfa_size_limit(
&mut self,
bytes: usize,
) -> &mut RegexMatcherBuilder {
self.config.dfa_size_limit = bytes;
self
}
/// Set the nesting limit for this parser.
///
/// The nesting limit controls how deep the abstract syntax tree is allowed
/// to be. If the AST exceeds the given limit (e.g., with too many nested
/// groups), then an error is returned by the parser.
///
/// The purpose of this limit is to act as a heuristic to prevent stack
/// overflow for consumers that do structural induction on an `Ast` using
/// explicit recursion. While this crate never does this (instead using
/// constant stack space and moving the call stack to the heap), other
/// crates may.
///
/// This limit is not checked until the entire Ast is parsed. Therefore,
/// if callers want to put a limit on the amount of heap space used, then
/// they should impose a limit on the length, in bytes, of the concrete
/// pattern string. In particular, this is viable since this parser
/// implementation will limit itself to heap space proportional to the
/// lenth of the pattern string.
///
/// Note that a nest limit of `0` will return a nest limit error for most
/// patterns but not all. For example, a nest limit of `0` permits `a` but
/// not `ab`, since `ab` requires a concatenation, which results in a nest
/// depth of `1`. In general, a nest limit is not something that manifests
/// in an obvious way in the concrete syntax, therefore, it should not be
/// used in a granular way.
pub fn nest_limit(&mut self, limit: u32) -> &mut RegexMatcherBuilder {
self.config.nest_limit = limit;
self
}
/// Set an ASCII line terminator for the matcher.
///
/// The purpose of setting a line terminator is to enable a certain class
/// of optimizations that can make line oriented searching faster. Namely,
/// when a line terminator is enabled, then the builder will guarantee that
/// the resulting matcher will never be capable of producing a match that
/// contains the line terminator. Because of this guarantee, users of the
/// resulting matcher do not need to slowly execute a search line by line
/// for line oriented search.
///
/// If the aforementioned guarantee about not matching a line terminator
/// cannot be made because of how the pattern was written, then the builder
/// will return an error when attempting to construct the matcher. For
/// example, the pattern `a\sb` will be transformed such that it can never
/// match `a\nb` (when `\n` is the line terminator), but the pattern `a\nb`
/// will result in an error since the `\n` cannot be easily removed without
/// changing the fundamental intent of the pattern.
///
/// If the given line terminator isn't an ASCII byte (`<=127`), then the
/// builder will return an error when constructing the matcher.
pub fn line_terminator(
&mut self,
line_term: Option<u8>,
) -> &mut RegexMatcherBuilder {
self.config.line_terminator = line_term.map(LineTerminator::byte);
self
}
/// Set the line terminator to `\r\n` and enable CRLF matching for `$` in
/// regex patterns.
///
/// This method sets two distinct settings:
///
/// 1. It causes the line terminator for the matcher to be `\r\n`. Namely,
/// this prevents the matcher from ever producing a match that contains
/// a `\r` or `\n`.
/// 2. It translates all instances of `$` in the pattern to `(?:\r??$)`.
/// This works around the fact that the regex engine does not support
/// matching CRLF as a line terminator when using `$`.
///
/// In particular, because of (2), the matches produced by the matcher may
/// be slightly different than what one would expect given the pattern.
/// This is the trade off made: in many cases, `$` will "just work" in the
/// presence of `\r\n` line terminators, but matches may require some
/// trimming to faithfully represent the indended match.
///
/// Note that if you do not wish to set the line terminator but would still
/// like `$` to match `\r\n` line terminators, then it is valid to call
/// `crlf(true)` followed by `line_terminator(None)`. Ordering is
/// important, since `crlf` and `line_terminator` override each other.
pub fn crlf(&mut self, yes: bool) -> &mut RegexMatcherBuilder {
if yes {
self.config.line_terminator = Some(LineTerminator::crlf());
} else {
self.config.line_terminator = None;
}
self.config.crlf = yes;
self
}
/// Require that all matches occur on word boundaries.
///
/// Enabling this option is subtly different than putting `\b` assertions
/// on both sides of your pattern. In particular, a `\b` assertion requires
/// that one side of it match a word character while the other match a
/// non-word character. This option, in contrast, merely requires that
/// one side match a non-word character.
///
/// For example, `\b-2\b` will not match `foo -2 bar` since `-` is not a
/// word character. However, `-2` with this `word` option enabled will
/// match the `-2` in `foo -2 bar`.
pub fn word(&mut self, yes: bool) -> &mut RegexMatcherBuilder {
self.config.word = yes;
self
}
}
/// An implementation of the `Matcher` trait using Rust's standard regex
/// library.
#[derive(Clone, Debug)]
pub struct RegexMatcher {
/// The configuration specified by the caller.
config: Config,
/// The underlying matcher implementation.
matcher: RegexMatcherImpl,
/// A regex that never reports false negatives but may report false
/// positives that is believed to be capable of being matched more quickly
/// than `regex`. Typically, this is a single literal or an alternation
/// of literals.
fast_line_regex: Option<Regex>,
/// A set of bytes that will never appear in a match.
non_matching_bytes: ByteSet,
}
impl RegexMatcher {
/// Create a new matcher from the given pattern using the default
/// configuration.
pub fn new(pattern: &str) -> Result<RegexMatcher, Error> {
RegexMatcherBuilder::new().build(pattern)
}
/// Create a new matcher from the given pattern using the default
/// configuration, but matches lines terminated by `\n`.
///
/// This returns an error if the given pattern contains a literal `\n`.
/// Other uses of `\n` (such as in `\s`) are removed transparently.
pub fn new_line_matcher(pattern: &str) -> Result<RegexMatcher, Error> {
RegexMatcherBuilder::new()
.line_terminator(Some(b'\n'))
.build(pattern)
}
}
/// An encapsulation of the type of matcher we use in `RegexMatcher`.
#[derive(Clone, Debug)]
enum RegexMatcherImpl {
/// The standard matcher used for all regular expressions.
Standard(StandardMatcher),
/// A matcher that only matches at word boundaries. This transforms the
/// regex to `(^|\W)(...)($|\W)` instead of the more intuitive `\b(...)\b`.
/// Because of this, the WordMatcher provides its own implementation of
/// `Matcher` to encapsulate its use of capture groups to make them
/// invisible to the caller.
Word(WordMatcher),
}
impl RegexMatcherImpl {
/// Based on the configuration, create a new implementation of the
/// `Matcher` trait.
fn new(expr: &ConfiguredHIR) -> Result<RegexMatcherImpl, Error> {
if expr.config().word {
Ok(RegexMatcherImpl::Word(WordMatcher::new(expr)?))
} else {
Ok(RegexMatcherImpl::Standard(StandardMatcher::new(expr)?))
}
}
}
// This implementation just dispatches on the internal matcher impl except
// for the line terminator optimization, which is possibly executed via
// `fast_line_regex`.
impl Matcher for RegexMatcher {
type Captures = RegexCaptures;
type Error = NoError;
fn find_at(
&self,
haystack: &[u8],
at: usize,
) -> Result<Option<Match>, NoError> {
use self::RegexMatcherImpl::*;
match self.matcher {
Standard(ref m) => m.find_at(haystack, at),
Word(ref m) => m.find_at(haystack, at),
}
}
fn new_captures(&self) -> Result<RegexCaptures, NoError> {
use self::RegexMatcherImpl::*;
match self.matcher {
Standard(ref m) => m.new_captures(),
Word(ref m) => m.new_captures(),
}
}
fn capture_count(&self) -> usize {
use self::RegexMatcherImpl::*;
match self.matcher {
Standard(ref m) => m.capture_count(),
Word(ref m) => m.capture_count(),
}
}
fn capture_index(&self, name: &str) -> Option<usize> {
use self::RegexMatcherImpl::*;
match self.matcher {
Standard(ref m) => m.capture_index(name),
Word(ref m) => m.capture_index(name),
}
}
fn find(&self, haystack: &[u8]) -> Result<Option<Match>, NoError> {
use self::RegexMatcherImpl::*;
match self.matcher {
Standard(ref m) => m.find(haystack),
Word(ref m) => m.find(haystack),
}
}
fn find_iter<F>(
&self,
haystack: &[u8],
matched: F,
) -> Result<(), NoError>
where F: FnMut(Match) -> bool
{
use self::RegexMatcherImpl::*;
match self.matcher {
Standard(ref m) => m.find_iter(haystack, matched),
Word(ref m) => m.find_iter(haystack, matched),
}
}
fn try_find_iter<F, E>(
&self,
haystack: &[u8],
matched: F,
) -> Result<Result<(), E>, NoError>
where F: FnMut(Match) -> Result<bool, E>
{
use self::RegexMatcherImpl::*;
match self.matcher {
Standard(ref m) => m.try_find_iter(haystack, matched),
Word(ref m) => m.try_find_iter(haystack, matched),
}
}
fn captures(
&self,
haystack: &[u8],
caps: &mut RegexCaptures,
) -> Result<bool, NoError> {
use self::RegexMatcherImpl::*;
match self.matcher {
Standard(ref m) => m.captures(haystack, caps),
Word(ref m) => m.captures(haystack, caps),
}
}
fn captures_iter<F>(
&self,
haystack: &[u8],
caps: &mut RegexCaptures,
matched: F,
) -> Result<(), NoError>
where F: FnMut(&RegexCaptures) -> bool
{
use self::RegexMatcherImpl::*;
match self.matcher {
Standard(ref m) => m.captures_iter(haystack, caps, matched),
Word(ref m) => m.captures_iter(haystack, caps, matched),
}
}
fn try_captures_iter<F, E>(
&self,
haystack: &[u8],
caps: &mut RegexCaptures,
matched: F,
) -> Result<Result<(), E>, NoError>
where F: FnMut(&RegexCaptures) -> Result<bool, E>
{
use self::RegexMatcherImpl::*;
match self.matcher {
Standard(ref m) => m.try_captures_iter(haystack, caps, matched),
Word(ref m) => m.try_captures_iter(haystack, caps, matched),
}
}
fn captures_at(
&self,
haystack: &[u8],
at: usize,
caps: &mut RegexCaptures,
) -> Result<bool, NoError> {
use self::RegexMatcherImpl::*;
match self.matcher {
Standard(ref m) => m.captures_at(haystack, at, caps),
Word(ref m) => m.captures_at(haystack, at, caps),
}
}
fn replace<F>(
&self,
haystack: &[u8],
dst: &mut Vec<u8>,
append: F,
) -> Result<(), NoError>
where F: FnMut(Match, &mut Vec<u8>) -> bool
{
use self::RegexMatcherImpl::*;
match self.matcher {
Standard(ref m) => m.replace(haystack, dst, append),
Word(ref m) => m.replace(haystack, dst, append),
}
}
fn replace_with_captures<F>(
&self,
haystack: &[u8],
caps: &mut RegexCaptures,
dst: &mut Vec<u8>,
append: F,
) -> Result<(), NoError>
where F: FnMut(&Self::Captures, &mut Vec<u8>) -> bool
{
use self::RegexMatcherImpl::*;
match self.matcher {
Standard(ref m) => {
m.replace_with_captures(haystack, caps, dst, append)
}
Word(ref m) => {
m.replace_with_captures(haystack, caps, dst, append)
}
}
}
fn is_match(&self, haystack: &[u8]) -> Result<bool, NoError> {
use self::RegexMatcherImpl::*;
match self.matcher {
Standard(ref m) => m.is_match(haystack),
Word(ref m) => m.is_match(haystack),
}
}
fn is_match_at(
&self,
haystack: &[u8],
at: usize,
) -> Result<bool, NoError> {
use self::RegexMatcherImpl::*;
match self.matcher {
Standard(ref m) => m.is_match_at(haystack, at),
Word(ref m) => m.is_match_at(haystack, at),
}
}
fn shortest_match(
&self,
haystack: &[u8],
) -> Result<Option<usize>, NoError> {
use self::RegexMatcherImpl::*;
match self.matcher {
Standard(ref m) => m.shortest_match(haystack),
Word(ref m) => m.shortest_match(haystack),
}
}
fn shortest_match_at(
&self,
haystack: &[u8],
at: usize,
) -> Result<Option<usize>, NoError> {
use self::RegexMatcherImpl::*;
match self.matcher {
Standard(ref m) => m.shortest_match_at(haystack, at),
Word(ref m) => m.shortest_match_at(haystack, at),
}
}
fn non_matching_bytes(&self) -> Option<&ByteSet> {
Some(&self.non_matching_bytes)
}
fn line_terminator(&self) -> Option<LineTerminator> {
self.config.line_terminator
}
fn find_candidate_line(
&self,
haystack: &[u8],
) -> Result<Option<LineMatchKind>, NoError> {
Ok(match self.fast_line_regex {
Some(ref regex) => {
regex.shortest_match(haystack).map(LineMatchKind::Candidate)
}
None => {
self.shortest_match(haystack)?.map(LineMatchKind::Confirmed)
}
})
}
}
/// The implementation of the standard regex matcher.
#[derive(Clone, Debug)]
struct StandardMatcher {
/// The regular expression compiled from the pattern provided by the
/// caller.
regex: Regex,
/// A map from capture group name to its corresponding index.
names: HashMap<String, usize>,
}
impl StandardMatcher {
fn new(expr: &ConfiguredHIR) -> Result<StandardMatcher, Error> {
let regex = expr.regex()?;
let mut names = HashMap::new();
for (i, optional_name) in regex.capture_names().enumerate() {
if let Some(name) = optional_name {
names.insert(name.to_string(), i);
}
}
Ok(StandardMatcher { regex, names })
}
}
impl Matcher for StandardMatcher {
type Captures = RegexCaptures;
type Error = NoError;
fn find_at(
&self,
haystack: &[u8],
at: usize,
) -> Result<Option<Match>, NoError> {
Ok(self.regex
.find_at(haystack, at)
.map(|m| Match::new(m.start(), m.end())))
}
fn new_captures(&self) -> Result<RegexCaptures, NoError> {
Ok(RegexCaptures::new(self.regex.capture_locations()))
}
fn capture_count(&self) -> usize {
self.regex.captures_len()
}
fn capture_index(&self, name: &str) -> Option<usize> {
self.names.get(name).map(|i| *i)
}
fn try_find_iter<F, E>(
&self,
haystack: &[u8],
mut matched: F,
) -> Result<Result<(), E>, NoError>
where F: FnMut(Match) -> Result<bool, E>
{
for m in self.regex.find_iter(haystack) {
match matched(Match::new(m.start(), m.end())) {
Ok(true) => continue,
Ok(false) => return Ok(Ok(())),
Err(err) => return Ok(Err(err)),
}
}
Ok(Ok(()))
}
fn captures_at(
&self,
haystack: &[u8],
at: usize,
caps: &mut RegexCaptures,
) -> Result<bool, NoError> {
Ok(self.regex.captures_read_at(&mut caps.locs, haystack, at).is_some())
}
fn shortest_match_at(
&self,
haystack: &[u8],
at: usize,
) -> Result<Option<usize>, NoError> {
Ok(self.regex.shortest_match_at(haystack, at))
}
}
/// Represents the match offsets of each capturing group in a match.
///
/// The first, or `0`th capture group, always corresponds to the entire match
/// and is guaranteed to be present when a match occurs. The next capture
/// group, at index `1`, corresponds to the first capturing group in the regex,
/// ordered by the position at which the left opening parenthesis occurs.
///
/// Note that not all capturing groups are guaranteed to be present in a match.
/// For example, in the regex, `(?P<foo>\w)|(?P<bar>\W)`, only one of `foo`
/// or `bar` will ever be set in any given match.
///
/// In order to access a capture group by name, you'll need to first find the
/// index of the group using the corresponding matcher's `capture_index`
/// method, and then use that index with `RegexCaptures::get`.
#[derive(Clone, Debug)]
pub struct RegexCaptures {
/// Where the locations are stored.
locs: CaptureLocations,
/// These captures behave as if the capturing groups begin at the given
/// offset. When set to `0`, this has no affect and capture groups are
/// indexed like normal.
///
/// This is useful when building matchers that wrap arbitrary regular
/// expressions. For example, `WordMatcher` takes an existing regex `re`
/// and creates `(?:^|\W)(re)(?:$|\W)`, but hides the fact that the regex
/// has been wrapped from the caller. In order to do this, the matcher
/// and the capturing groups must behave as if `(re)` is the `0`th capture
/// group.
offset: usize,
}
impl Captures for RegexCaptures {
fn len(&self) -> usize {
self.locs.len().checked_sub(self.offset).unwrap()
}
fn get(&self, i: usize) -> Option<Match> {
let actual = i.checked_add(self.offset).unwrap();
self.locs.pos(actual).map(|(s, e)| Match::new(s, e))
}
}
impl RegexCaptures {
pub(crate) fn new(locs: CaptureLocations) -> RegexCaptures {
RegexCaptures::with_offset(locs, 0)
}
pub(crate) fn with_offset(
locs: CaptureLocations,
offset: usize,
) -> RegexCaptures {
RegexCaptures { locs, offset }
}
pub(crate) fn locations(&mut self) -> &mut CaptureLocations {
&mut self.locs
}
}
#[cfg(test)]
mod tests {
use grep_matcher::{LineMatchKind, Matcher};
use super::*;
// Test that enabling word matches does the right thing and demonstrate
// the difference between it and surrounding the regex in `\b`.
#[test]
fn word() {
let matcher = RegexMatcherBuilder::new()
.word(true)
.build(r"-2")
.unwrap();
assert!(matcher.is_match(b"abc -2 foo").unwrap());
let matcher = RegexMatcherBuilder::new()
.word(false)
.build(r"\b-2\b")
.unwrap();
assert!(!matcher.is_match(b"abc -2 foo").unwrap());
}
// Test that enabling a line terminator prevents it from matching through
// said line terminator.
#[test]
fn line_terminator() {
// This works, because there's no line terminator specified.
let matcher = RegexMatcherBuilder::new()
.build(r"abc\sxyz")
.unwrap();
assert!(matcher.is_match(b"abc\nxyz").unwrap());
// This doesn't.
let matcher = RegexMatcherBuilder::new()
.line_terminator(Some(b'\n'))
.build(r"abc\sxyz")
.unwrap();
assert!(!matcher.is_match(b"abc\nxyz").unwrap());
}
// Ensure that the builder returns an error if a line terminator is set
// and the regex could not be modified to remove a line terminator.
#[test]
fn line_terminator_error() {
assert!(RegexMatcherBuilder::new()
.line_terminator(Some(b'\n'))
.build(r"a\nz")
.is_err())
}
// Test that enabling CRLF permits `$` to match at the end of a line.
#[test]
fn line_terminator_crlf() {
// Test normal use of `$` with a `\n` line terminator.
let matcher = RegexMatcherBuilder::new()
.multi_line(true)
.build(r"abc$")
.unwrap();
assert!(matcher.is_match(b"abc\n").unwrap());
// Test that `$` doesn't match at `\r\n` boundary normally.
let matcher = RegexMatcherBuilder::new()
.multi_line(true)
.build(r"abc$")
.unwrap();
assert!(!matcher.is_match(b"abc\r\n").unwrap());
// Now check the CRLF handling.
let matcher = RegexMatcherBuilder::new()
.multi_line(true)
.crlf(true)
.build(r"abc$")
.unwrap();
assert!(matcher.is_match(b"abc\r\n").unwrap());
}
// Test that smart case works.
#[test]
fn case_smart() {
let matcher = RegexMatcherBuilder::new()
.case_smart(true)
.build(r"abc")
.unwrap();
assert!(matcher.is_match(b"ABC").unwrap());
let matcher = RegexMatcherBuilder::new()
.case_smart(true)
.build(r"aBc")
.unwrap();
assert!(!matcher.is_match(b"ABC").unwrap());
}
// Test that finding candidate lines works as expected.
#[test]
fn candidate_lines() {
fn is_confirmed(m: LineMatchKind) -> bool {
match m {
LineMatchKind::Confirmed(_) => true,
_ => false,
}
}
fn is_candidate(m: LineMatchKind) -> bool {
match m {
LineMatchKind::Candidate(_) => true,
_ => false,
}
}
// With no line terminator set, we can't employ any optimizations,
// so we get a confirmed match.
let matcher = RegexMatcherBuilder::new()
.build(r"\wfoo\s")
.unwrap();
let m = matcher.find_candidate_line(b"afoo ").unwrap().unwrap();
assert!(is_confirmed(m));
// With a line terminator and a regex specially crafted to have an
// easy-to-detect inner literal, we can apply an optimization that
// quickly finds candidate matches.
let matcher = RegexMatcherBuilder::new()
.line_terminator(Some(b'\n'))
.build(r"\wfoo\s")
.unwrap();
let m = matcher.find_candidate_line(b"afoo ").unwrap().unwrap();
assert!(is_candidate(m));
}
}

View File

@ -0,0 +1,128 @@
use grep_matcher::ByteSet;
use regex_syntax::hir::{self, Hir, HirKind};
use utf8_ranges::Utf8Sequences;
/// Return a confirmed set of non-matching bytes from the given expression.
pub fn non_matching_bytes(expr: &Hir) -> ByteSet {
let mut set = ByteSet::full();
remove_matching_bytes(expr, &mut set);
set
}
/// Remove any bytes from the given set that can occur in a matched produced by
/// the given expression.
fn remove_matching_bytes(
expr: &Hir,
set: &mut ByteSet,
) {
match *expr.kind() {
HirKind::Empty
| HirKind::Anchor(_)
| HirKind::WordBoundary(_) => {}
HirKind::Literal(hir::Literal::Unicode(c)) => {
for &b in c.encode_utf8(&mut [0; 4]).as_bytes() {
set.remove(b);
}
}
HirKind::Literal(hir::Literal::Byte(b)) => {
set.remove(b);
}
HirKind::Class(hir::Class::Unicode(ref cls)) => {
for range in cls.iter() {
// This is presumably faster than encoding every codepoint
// to UTF-8 and then removing those bytes from the set.
for seq in Utf8Sequences::new(range.start(), range.end()) {
for byte_range in seq.as_slice() {
set.remove_all(byte_range.start, byte_range.end);
}
}
}
}
HirKind::Class(hir::Class::Bytes(ref cls)) => {
for range in cls.iter() {
set.remove_all(range.start(), range.end());
}
}
HirKind::Repetition(ref x) => {
remove_matching_bytes(&x.hir, set);
}
HirKind::Group(ref x) => {
remove_matching_bytes(&x.hir, set);
}
HirKind::Concat(ref xs) => {
for x in xs {
remove_matching_bytes(x, set);
}
}
HirKind::Alternation(ref xs) => {
for x in xs {
remove_matching_bytes(x, set);
}
}
}
}
#[cfg(test)]
mod tests {
use grep_matcher::ByteSet;
use regex_syntax::ParserBuilder;
use super::non_matching_bytes;
fn extract(pattern: &str) -> ByteSet {
let expr = ParserBuilder::new()
.allow_invalid_utf8(true)
.build()
.parse(pattern)
.unwrap();
non_matching_bytes(&expr)
}
fn sparse(set: &ByteSet) -> Vec<u8> {
let mut sparse_set = vec![];
for b in (0..256).map(|b| b as u8) {
if set.contains(b) {
sparse_set.push(b);
}
}
sparse_set
}
fn sparse_except(except: &[u8]) -> Vec<u8> {
let mut except_set = vec![false; 256];
for &b in except {
except_set[b as usize] = true;
}
let mut set = vec![];
for b in (0..256).map(|b| b as u8) {
if !except_set[b as usize] {
set.push(b);
}
}
set
}
#[test]
fn dot() {
assert_eq!(sparse(&extract(".")), vec![
b'\n',
192, 193, 245, 246, 247, 248, 249,
250, 251, 252, 253, 254, 255,
]);
assert_eq!(sparse(&extract("(?s).")), vec![
192, 193, 245, 246, 247, 248, 249,
250, 251, 252, 253, 254, 255,
]);
assert_eq!(sparse(&extract("(?-u).")), vec![b'\n']);
assert_eq!(sparse(&extract("(?s-u).")), vec![]);
}
#[test]
fn literal() {
assert_eq!(sparse(&extract("a")), sparse_except(&[b'a']));
assert_eq!(sparse(&extract("")), sparse_except(&[0xE2, 0x98, 0x83]));
assert_eq!(sparse(&extract(r"\xFF")), sparse_except(&[0xC3, 0xBF]));
assert_eq!(sparse(&extract(r"(?-u)\xFF")), sparse_except(&[0xFF]));
}
}

154
grep-regex/src/strip.rs Normal file
View File

@ -0,0 +1,154 @@
use grep_matcher::LineTerminator;
use regex_syntax::hir::{self, Hir, HirKind};
use error::{Error, ErrorKind};
/// Return an HIR that is guaranteed to never match the given line terminator,
/// if possible.
///
/// If the transformation isn't possible, then an error is returned.
///
/// In general, if a literal line terminator occurs anywhere in the HIR, then
/// this will return an error. However, if the line terminator occurs within
/// a character class with at least one other character (that isn't also a line
/// terminator), then the line terminator is simply stripped from that class.
///
/// If the given line terminator is not ASCII, then this function returns an
/// error.
pub fn strip_from_match(
expr: Hir,
line_term: LineTerminator,
) -> Result<Hir, Error> {
if line_term.is_crlf() {
let expr1 = strip_from_match_ascii(expr, b'\r')?;
strip_from_match_ascii(expr1, b'\n')
} else {
let b = line_term.as_byte();
if b > 0x7F {
return Err(Error::new(ErrorKind::InvalidLineTerminator(b)));
}
strip_from_match_ascii(expr, b)
}
}
/// The implementation of strip_from_match. The given byte must be ASCII. This
/// function panics otherwise.
fn strip_from_match_ascii(
expr: Hir,
byte: u8,
) -> Result<Hir, Error> {
assert!(byte <= 0x7F);
let chr = byte as char;
assert_eq!(chr.len_utf8(), 1);
let invalid = || Err(Error::new(ErrorKind::NotAllowed(chr.to_string())));
Ok(match expr.into_kind() {
HirKind::Empty => Hir::empty(),
HirKind::Literal(hir::Literal::Unicode(c)) => {
if c == chr {
return invalid();
}
Hir::literal(hir::Literal::Unicode(c))
}
HirKind::Literal(hir::Literal::Byte(b)) => {
if b as char == chr {
return invalid();
}
Hir::literal(hir::Literal::Byte(b))
}
HirKind::Class(hir::Class::Unicode(mut cls)) => {
let remove = hir::ClassUnicode::new(Some(
hir::ClassUnicodeRange::new(chr, chr),
));
cls.difference(&remove);
if cls.ranges().is_empty() {
return invalid();
}
Hir::class(hir::Class::Unicode(cls))
}
HirKind::Class(hir::Class::Bytes(mut cls)) => {
let remove = hir::ClassBytes::new(Some(
hir::ClassBytesRange::new(byte, byte),
));
cls.difference(&remove);
if cls.ranges().is_empty() {
return invalid();
}
Hir::class(hir::Class::Bytes(cls))
}
HirKind::Anchor(x) => Hir::anchor(x),
HirKind::WordBoundary(x) => Hir::word_boundary(x),
HirKind::Repetition(mut x) => {
x.hir = Box::new(strip_from_match_ascii(*x.hir, byte)?);
Hir::repetition(x)
}
HirKind::Group(mut x) => {
x.hir = Box::new(strip_from_match_ascii(*x.hir, byte)?);
Hir::group(x)
}
HirKind::Concat(xs) => {
let xs = xs.into_iter()
.map(|e| strip_from_match_ascii(e, byte))
.collect::<Result<Vec<Hir>, Error>>()?;
Hir::concat(xs)
}
HirKind::Alternation(xs) => {
let xs = xs.into_iter()
.map(|e| strip_from_match_ascii(e, byte))
.collect::<Result<Vec<Hir>, Error>>()?;
Hir::alternation(xs)
}
})
}
#[cfg(test)]
mod tests {
use regex_syntax::Parser;
use error::Error;
use super::{LineTerminator, strip_from_match};
fn roundtrip(pattern: &str, byte: u8) -> String {
roundtrip_line_term(pattern, LineTerminator::byte(byte)).unwrap()
}
fn roundtrip_crlf(pattern: &str) -> String {
roundtrip_line_term(pattern, LineTerminator::crlf()).unwrap()
}
fn roundtrip_err(pattern: &str, byte: u8) -> Result<String, Error> {
roundtrip_line_term(pattern, LineTerminator::byte(byte))
}
fn roundtrip_line_term(
pattern: &str,
line_term: LineTerminator,
) -> Result<String, Error> {
let expr1 = Parser::new().parse(pattern).unwrap();
let expr2 = strip_from_match(expr1, line_term)?;
Ok(expr2.to_string())
}
#[test]
fn various() {
assert_eq!(roundtrip(r"[a\n]", b'\n'), "[a]");
assert_eq!(roundtrip(r"[a\n]", b'a'), "[\n]");
assert_eq!(roundtrip_crlf(r"[a\n]"), "[a]");
assert_eq!(roundtrip_crlf(r"[a\r]"), "[a]");
assert_eq!(roundtrip_crlf(r"[a\r\n]"), "[a]");
assert_eq!(roundtrip(r"(?-u)\s", b'a'), r"(?-u:[\x09-\x0D\x20])");
assert_eq!(roundtrip(r"(?-u)\s", b'\n'), r"(?-u:[\x09\x0B-\x0D\x20])");
assert!(roundtrip_err(r"\n", b'\n').is_err());
assert!(roundtrip_err(r"abc\n", b'\n').is_err());
assert!(roundtrip_err(r"\nabc", b'\n').is_err());
assert!(roundtrip_err(r"abc\nxyz", b'\n').is_err());
assert!(roundtrip_err(r"\x0A", b'\n').is_err());
assert!(roundtrip_err(r"\u000A", b'\n').is_err());
assert!(roundtrip_err(r"\U0000000A", b'\n').is_err());
assert!(roundtrip_err(r"\u{A}", b'\n').is_err());
assert!(roundtrip_err("\n", b'\n').is_err());
}
}

29
grep-regex/src/util.rs Normal file
View File

@ -0,0 +1,29 @@
/// Converts an arbitrary sequence of bytes to a literal suitable for building
/// a regular expression.
pub fn bytes_to_regex(bs: &[u8]) -> String {
use std::fmt::Write;
use regex_syntax::is_meta_character;
let mut s = String::with_capacity(bs.len());
for &b in bs {
if b <= 0x7F && !is_meta_character(b as char) {
write!(s, r"{}", b as char).unwrap();
} else {
write!(s, r"\x{:02x}", b).unwrap();
}
}
s
}
/// Converts arbitrary bytes to a nice string.
pub fn show_bytes(bs: &[u8]) -> String {
use std::ascii::escape_default;
use std::str;
let mut nice = String::new();
for &b in bs {
let part: Vec<u8> = escape_default(b).collect();
nice.push_str(str::from_utf8(&part).unwrap());
}
nice
}

196
grep-regex/src/word.rs Normal file
View File

@ -0,0 +1,196 @@
use std::collections::HashMap;
use std::cell::RefCell;
use std::sync::Arc;
use grep_matcher::{Match, Matcher, NoError};
use regex::bytes::{CaptureLocations, Regex};
use thread_local::CachedThreadLocal;
use config::ConfiguredHIR;
use error::Error;
use matcher::RegexCaptures;
/// A matcher for implementing "word match" semantics.
#[derive(Debug)]
pub struct WordMatcher {
/// The regex which is roughly `(?:^|\W)(<original pattern>)(?:$|\W)`.
regex: Regex,
/// A map from capture group name to capture group index.
names: HashMap<String, usize>,
/// A reusable buffer for finding the match location of the inner group.
locs: Arc<CachedThreadLocal<RefCell<CaptureLocations>>>,
}
impl Clone for WordMatcher {
fn clone(&self) -> WordMatcher {
// We implement Clone manually so that we get a fresh CachedThreadLocal
// such that it can set its own thread owner. This permits each thread
// usings `locs` to hit the fast path.
WordMatcher {
regex: self.regex.clone(),
names: self.names.clone(),
locs: Arc::new(CachedThreadLocal::new()),
}
}
}
impl WordMatcher {
/// Create a new matcher from the given pattern that only produces matches
/// that are considered "words."
///
/// The given options are used to construct the regular expression
/// internally.
pub fn new(expr: &ConfiguredHIR) -> Result<WordMatcher, Error> {
let word_expr = expr.with_pattern(|pat| {
format!(r"(?:(?m:^)|\W)({})(?:(?m:$)|\W)", pat)
})?;
let regex = word_expr.regex()?;
let locs = Arc::new(CachedThreadLocal::new());
let mut names = HashMap::new();
for (i, optional_name) in regex.capture_names().enumerate() {
if let Some(name) = optional_name {
names.insert(name.to_string(), i.checked_sub(1).unwrap());
}
}
Ok(WordMatcher { regex, names, locs })
}
}
impl Matcher for WordMatcher {
type Captures = RegexCaptures;
type Error = NoError;
fn find_at(
&self,
haystack: &[u8],
at: usize,
) -> Result<Option<Match>, NoError> {
// To make this easy to get right, we extract captures here instead of
// calling `find_at`. The actual match is at capture group `1` instead
// of `0`. We *could* use `find_at` here and then trim the match after
// the fact, but that's a bit harder to get right, and it's not clear
// if it's worth it.
let cell = self.locs.get_or(|| {
Box::new(RefCell::new(self.regex.capture_locations()))
});
let mut caps = cell.borrow_mut();
self.regex.captures_read_at(&mut caps, haystack, at);
Ok(caps.get(1).map(|m| Match::new(m.0, m.1)))
}
fn new_captures(&self) -> Result<RegexCaptures, NoError> {
Ok(RegexCaptures::with_offset(self.regex.capture_locations(), 1))
}
fn capture_count(&self) -> usize {
self.regex.captures_len().checked_sub(1).unwrap()
}
fn capture_index(&self, name: &str) -> Option<usize> {
self.names.get(name).map(|i| *i)
}
fn captures_at(
&self,
haystack: &[u8],
at: usize,
caps: &mut RegexCaptures,
) -> Result<bool, NoError> {
let r = self.regex.captures_read_at(caps.locations(), haystack, at);
Ok(r.is_some())
}
// We specifically do not implement other methods like find_iter or
// captures_iter. Namely, the iter methods are guaranteed to be correct
// by virtue of implementing find_at and captures_at above.
}
#[cfg(test)]
mod tests {
use grep_matcher::{Captures, Match, Matcher};
use config::Config;
use super::WordMatcher;
fn matcher(pattern: &str) -> WordMatcher {
let chir = Config::default().hir(pattern).unwrap();
WordMatcher::new(&chir).unwrap()
}
fn find(pattern: &str, haystack: &str) -> Option<(usize, usize)> {
matcher(pattern)
.find(haystack.as_bytes())
.unwrap()
.map(|m| (m.start(), m.end()))
}
fn find_by_caps(pattern: &str, haystack: &str) -> Option<(usize, usize)> {
let m = matcher(pattern);
let mut caps = m.new_captures().unwrap();
if !m.captures(haystack.as_bytes(), &mut caps).unwrap() {
None
} else {
caps.get(0).map(|m| (m.start(), m.end()))
}
}
// Test that the standard `find` API reports offsets correctly.
#[test]
fn various_find() {
assert_eq!(Some((0, 3)), find(r"foo", "foo"));
assert_eq!(Some((0, 3)), find(r"foo", "foo("));
assert_eq!(Some((1, 4)), find(r"foo", "!foo("));
assert_eq!(None, find(r"foo", "!afoo("));
assert_eq!(Some((0, 3)), find(r"foo", "foo☃"));
assert_eq!(None, find(r"foo", "fooб"));
// assert_eq!(Some((0, 3)), find(r"foo", "fooб"));
// See: https://github.com/BurntSushi/ripgrep/issues/389
assert_eq!(Some((0, 2)), find(r"-2", "-2"));
}
// Test that the captures API also reports offsets correctly, just as
// find does. This exercises a different path in the code since captures
// are handled differently.
#[test]
fn various_captures() {
assert_eq!(Some((0, 3)), find_by_caps(r"foo", "foo"));
assert_eq!(Some((0, 3)), find_by_caps(r"foo", "foo("));
assert_eq!(Some((1, 4)), find_by_caps(r"foo", "!foo("));
assert_eq!(None, find_by_caps(r"foo", "!afoo("));
assert_eq!(Some((0, 3)), find_by_caps(r"foo", "foo☃"));
assert_eq!(None, find_by_caps(r"foo", "fooб"));
// assert_eq!(Some((0, 3)), find_by_caps(r"foo", "fooб"));
// See: https://github.com/BurntSushi/ripgrep/issues/389
assert_eq!(Some((0, 2)), find_by_caps(r"-2", "-2"));
}
// Test that the capture reporting methods work as advertised.
#[test]
fn capture_indexing() {
let m = matcher(r"(a)(?P<foo>b)(c)");
assert_eq!(4, m.capture_count());
assert_eq!(Some(2), m.capture_index("foo"));
let mut caps = m.new_captures().unwrap();
assert_eq!(4, caps.len());
assert!(m.captures(b"abc", &mut caps).unwrap());
assert_eq!(caps.get(0), Some(Match::new(0, 3)));
assert_eq!(caps.get(1), Some(Match::new(0, 1)));
assert_eq!(caps.get(2), Some(Match::new(1, 2)));
assert_eq!(caps.get(3), Some(Match::new(2, 3)));
assert_eq!(caps.get(4), None);
assert!(m.captures(b"#abc#", &mut caps).unwrap());
assert_eq!(caps.get(0), Some(Match::new(1, 4)));
assert_eq!(caps.get(1), Some(Match::new(1, 2)));
assert_eq!(caps.get(2), Some(Match::new(2, 3)));
assert_eq!(caps.get(3), Some(Match::new(3, 4)));
assert_eq!(caps.get(4), None);
}
}

35
grep-searcher/Cargo.toml Normal file
View File

@ -0,0 +1,35 @@
[package]
name = "grep-searcher"
version = "0.0.1" #:version
authors = ["Andrew Gallant <jamslam@gmail.com>"]
description = """
Fast line oriented regex searching as a library.
"""
documentation = "https://docs.rs/grep-searcher"
homepage = "https://github.com/BurntSushi/ripgrep"
repository = "https://github.com/BurntSushi/ripgrep"
readme = "README.md"
keywords = ["regex", "grep", "egrep", "search", "pattern"]
license = "Unlicense/MIT"
[dependencies]
bytecount = "0.3.1"
encoding_rs = "0.8"
encoding_rs_io = "0.1"
grep-matcher = { version = "0.0.1", path = "../grep-matcher" }
log = "0.4"
memchr = "2"
memmap = "0.6"
[dev-dependencies]
grep-regex = { version = "0.0.1", path = "../grep-regex" }
regex = "1"
[features]
avx-accel = [
"bytecount/avx-accel",
]
simd-accel = [
"bytecount/simd-accel",
"encoding_rs/simd-accel",
]

21
grep-searcher/LICENSE-MIT Normal file
View File

@ -0,0 +1,21 @@
The MIT License (MIT)
Copyright (c) 2015 Andrew Gallant
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

4
grep-searcher/README.md Normal file
View File

@ -0,0 +1,4 @@
grep
----
This is a *library* that provides grep-style line-by-line regex searching (with
comparable performance to `grep` itself).

24
grep-searcher/UNLICENSE Normal file
View File

@ -0,0 +1,24 @@
This is free and unencumbered software released into the public domain.
Anyone is free to copy, modify, publish, use, compile, sell, or
distribute this software, either in source code form or as a compiled
binary, for any purpose, commercial or non-commercial, and by any
means.
In jurisdictions that recognize copyright laws, the author or authors
of this software dedicate any and all copyright interest in the
software to the public domain. We make this dedication for the benefit
of the public at large and to the detriment of our heirs and
successors. We intend this dedication to be an overt act of
relinquishment in perpetuity of all present and future rights to this
software under copyright law.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
For more information, please refer to <http://unlicense.org/>

View File

@ -0,0 +1,33 @@
extern crate grep_regex;
extern crate grep_searcher;
use std::env;
use std::error::Error;
use std::io;
use std::process;
use grep_regex::RegexMatcher;
use grep_searcher::Searcher;
use grep_searcher::sinks::UTF8;
fn main() {
if let Err(err) = example() {
eprintln!("{}", err);
process::exit(1);
}
}
fn example() -> Result<(), Box<Error>> {
let pattern = match env::args().nth(1) {
Some(pattern) => pattern,
None => return Err(From::from(format!(
"Usage: search-stdin <pattern>"
))),
};
let matcher = RegexMatcher::new(&pattern)?;
Searcher::new().search_reader(&matcher, io::stdin(), UTF8(|lnum, line| {
print!("{}:{}", lnum, line);
Ok(true)
}))?;
Ok(())
}

135
grep-searcher/src/lib.rs Normal file
View File

@ -0,0 +1,135 @@
/*!
This crate provides an implementation of line oriented search, with optional
support for multi-line search.
# Brief overview
The principle type in this crate is a
[`Searcher`](struct.Searcher.html),
which can be configured and built by a
[`SearcherBuilder`](struct.SearcherBuilder.html).
A `Searcher` is responsible for reading bytes from a source (e.g., a file),
executing a search of those bytes using a `Matcher` (e.g., a regex) and then
reporting the results of that search to a
[`Sink`](trait.Sink.html)
(e.g., stdout). The `Searcher` itself is principally responsible for managing
the consumption of bytes from a source and applying a `Matcher` over those
bytes in an efficient way. The `Searcher` is also responsible for inverting
a search, counting lines, reporting contextual lines, detecting binary data
and even deciding whether or not to use memory maps.
A `Matcher` (which is defined in the
[`grep-matcher`](https://crates.io/crates/grep-matcher)
crate) is a trait for describing the lowest levels of pattern search in a
generic way. The interface itself is very similar to the interface of a regular
expression. For example, the
[`grep-regex`](https://crates.io/crates/grep-regex)
crate provides an implementation of the `Matcher` trait using Rust's
[`regex`](https://crates.io/crates/regex)
crate.
Finally, a `Sink` describes how callers receive search results producer by a
`Searcher`. This includes routines that are called at the beginning and end of
a search, in addition to routines that are called when matching or contextual
lines are found by the `Searcher`. Implementations of `Sink` can be trivially
simple, or extraordinarily complex, such as the
`Standard` printer found in the
[`grep-printer`](https://crates.io/crates/grep-printer)
crate, which effectively implements grep-like output.
This crate also provides convenience `Sink` implementations in the
[`sinks`](sinks/index.html)
sub-module for easy searching with closures.
# Example
This example shows how to execute the searcher and read the search results
using the
[`UTF8`](sinks/struct.UTF8.html)
implementation of `Sink`.
```
extern crate grep_matcher;
extern crate grep_regex;
extern crate grep_searcher;
use std::error::Error;
use grep_matcher::Matcher;
use grep_regex::RegexMatcher;
use grep_searcher::Searcher;
use grep_searcher::sinks::UTF8;
const SHERLOCK: &'static [u8] = b"\
For the Doctor Watsons of this world, as opposed to the Sherlock
Holmeses, success in the province of detective work must always
be, to a very large extent, the result of luck. Sherlock Holmes
can extract a clew from a wisp of straw or a flake of cigar ash;
but Doctor Watson has to have it taken out for him and dusted,
and exhibited clearly, with a label attached.
";
# fn main() { example().unwrap() }
fn example() -> Result<(), Box<Error>> {
let matcher = RegexMatcher::new(r"Doctor \w+")?;
let mut matches: Vec<(u64, String)> = vec![];
Searcher::new().search_slice(&matcher, SHERLOCK, UTF8(|lnum, line| {
// We are guaranteed to find a match, so the unwrap is OK.
eprintln!("LINE: {:?}", line);
let mymatch = matcher.find(line.as_bytes())?.unwrap();
matches.push((lnum, line[mymatch].to_string()));
Ok(true)
}))?;
eprintln!("MATCHES: {:?}", matches);
assert_eq!(matches.len(), 2);
assert_eq!(
matches[0],
(1, "Doctor Watsons".to_string())
);
assert_eq!(
matches[1],
(5, "Doctor Watson".to_string())
);
Ok(())
}
```
See also `examples/search-stdin.rs` from the root of this crate's directory
to see a similar example that accepts a pattern on the command line and
searches stdin.
*/
#![deny(missing_docs)]
extern crate bytecount;
extern crate encoding_rs;
extern crate encoding_rs_io;
extern crate grep_matcher;
#[macro_use]
extern crate log;
extern crate memchr;
extern crate memmap;
#[cfg(test)]
extern crate regex;
pub use lines::{LineIter, LineStep};
pub use searcher::{
BinaryDetection, ConfigError, Encoding, MmapChoice,
Searcher, SearcherBuilder,
};
pub use sink::{
Sink, SinkError,
SinkContext, SinkContextKind, SinkFinish, SinkMatch,
};
pub use sink::sinks;
#[macro_use]
mod macros;
mod line_buffer;
mod lines;
mod searcher;
mod sink;
#[cfg(test)]
mod testutil;

View File

@ -0,0 +1,950 @@
use std::cmp;
use std::io;
use std::ptr;
use memchr::{memchr, memrchr};
/// The default buffer capacity that we use for the line buffer.
pub(crate) const DEFAULT_BUFFER_CAPACITY: usize = 8 * (1<<10); // 8 KB
/// The behavior of a searcher in the face of long lines and big contexts.
///
/// When searching data incrementally using a fixed size buffer, this controls
/// the amount of *additional* memory to allocate beyond the size of the buffer
/// to accommodate lines (which may include the lines in a context window, when
/// enabled) that do not fit in the buffer.
///
/// The default is to eagerly allocate without a limit.
#[derive(Clone, Copy, Debug)]
pub enum BufferAllocation {
/// Attempt to expand the size of the buffer until either at least the next
/// line fits into memory or until all available memory is exhausted.
///
/// This is the default.
Eager,
/// Limit the amount of additional memory allocated to the given size. If
/// a line is found that requires more memory than is allowed here, then
/// stop reading and return an error.
Error(usize),
}
impl Default for BufferAllocation {
fn default() -> BufferAllocation {
BufferAllocation::Eager
}
}
/// Create a new error to be used when a configured allocation limit has been
/// reached.
pub fn alloc_error(limit: usize) -> io::Error {
let msg = format!("configured allocation limit ({}) exceeded", limit);
io::Error::new(io::ErrorKind::Other, msg)
}
/// The behavior of binary detection in the line buffer.
///
/// Binary detection is the process of _heuristically_ identifying whether a
/// given chunk of data is binary or not, and then taking an action based on
/// the result of that heuristic. The motivation behind detecting binary data
/// is that binary data often indicates data that is undesirable to search
/// using textual patterns. Of course, there are many cases in which this isn't
/// true, which is why binary detection is disabled by default.
#[derive(Clone, Copy, Debug)]
pub enum BinaryDetection {
/// No binary detection is performed. Data reported by the line buffer may
/// contain arbitrary bytes.
None,
/// The given byte is searched in all contents read by the line buffer. If
/// it occurs, then the data is considered binary and the line buffer acts
/// as if it reached EOF. The line buffer guarantees that this byte will
/// never be observable by callers.
Quit(u8),
/// The given byte is searched in all contents read by the line buffer. If
/// it occurs, then it is replaced by the line terminator. The line buffer
/// guarantees that this byte will never be observable by callers.
Convert(u8),
}
impl Default for BinaryDetection {
fn default() -> BinaryDetection {
BinaryDetection::None
}
}
impl BinaryDetection {
/// Returns true if and only if the detection heuristic demands that
/// the line buffer stop read data once binary data is observed.
fn is_quit(&self) -> bool {
match *self {
BinaryDetection::Quit(_) => true,
_ => false,
}
}
}
/// The configuration of a buffer. This contains options that are fixed once
/// a buffer has been constructed.
#[derive(Clone, Copy, Debug)]
struct Config {
/// The number of bytes to attempt to read at a time.
capacity: usize,
/// The line terminator.
lineterm: u8,
/// The behavior for handling long lines.
buffer_alloc: BufferAllocation,
/// When set, the presence of the given byte indicates binary content.
binary: BinaryDetection,
}
impl Default for Config {
fn default() -> Config {
Config {
capacity: DEFAULT_BUFFER_CAPACITY,
lineterm: b'\n',
buffer_alloc: BufferAllocation::default(),
binary: BinaryDetection::default(),
}
}
}
/// A builder for constructing line buffers.
#[derive(Clone, Debug, Default)]
pub struct LineBufferBuilder {
config: Config,
}
impl LineBufferBuilder {
/// Create a new builder for a buffer.
pub fn new() -> LineBufferBuilder {
LineBufferBuilder { config: Config::default() }
}
/// Create a new line buffer from this builder's configuration.
pub fn build(&self) -> LineBuffer {
LineBuffer {
config: self.config,
buf: vec![0; self.config.capacity],
pos: 0,
last_lineterm: 0,
end: 0,
absolute_byte_offset: 0,
binary_byte_offset: None,
}
}
/// Set the default capacity to use for a buffer.
///
/// In general, the capacity of a buffer corresponds to the amount of data
/// to hold in memory, and the size of the reads to make to the underlying
/// reader.
///
/// This is set to a reasonable default and probably shouldn't be changed
/// unless there's a specific reason to do so.
pub fn capacity(&mut self, capacity: usize) -> &mut LineBufferBuilder {
self.config.capacity = capacity;
self
}
/// Set the line terminator for the buffer.
///
/// Every buffer has a line terminator, and this line terminator is used
/// to determine how to roll the buffer forward. For example, when a read
/// to the buffer's underlying reader occurs, the end of the data that is
/// read is likely to correspond to an incomplete line. As a line buffer,
/// callers should not access this data since it is incomplete. The line
/// terminator is how the line buffer determines the part of the read that
/// is incomplete.
///
/// By default, this is set to `b'\n'`.
pub fn line_terminator(&mut self, lineterm: u8) -> &mut LineBufferBuilder {
self.config.lineterm = lineterm;
self
}
/// Set the maximum amount of additional memory to allocate for long lines.
///
/// In order to enable line oriented search, a fundamental requirement is
/// that, at a minimum, each line must be able to fit into memory. This
/// setting controls how big that line is allowed to be. By default, this
/// is set to `BufferAllocation::Eager`, which means a line buffer will
/// attempt to allocate as much memory as possible to fit a line, and will
/// only be limited by available memory.
///
/// Note that this setting only applies to the amount of *additional*
/// memory to allocate, beyond the capacity of the buffer. That means that
/// a value of `0` is sensible, and in particular, will guarantee that a
/// line buffer will never allocate additional memory beyond its initial
/// capacity.
pub fn buffer_alloc(
&mut self,
behavior: BufferAllocation,
) -> &mut LineBufferBuilder {
self.config.buffer_alloc = behavior;
self
}
/// Whether to enable binary detection or not. Depending on the setting,
/// this can either cause the line buffer to report EOF early or it can
/// cause the line buffer to clean the data.
///
/// By default, this is disabled. In general, binary detection should be
/// viewed as an imperfect heuristic.
pub fn binary_detection(
&mut self,
detection: BinaryDetection,
) -> &mut LineBufferBuilder {
self.config.binary = detection;
self
}
}
/// A line buffer reader efficiently reads a line oriented buffer from an
/// arbitrary reader.
#[derive(Debug)]
pub struct LineBufferReader<'b, R> {
rdr: R,
line_buffer: &'b mut LineBuffer,
}
impl<'b, R: io::Read> LineBufferReader<'b, R> {
/// Create a new buffered reader that reads from `rdr` and uses the given
/// `line_buffer` as an intermediate buffer.
///
/// This does not change the binary detection behavior of the given line
/// buffer.
pub fn new(
rdr: R,
line_buffer: &'b mut LineBuffer,
) -> LineBufferReader<'b, R> {
line_buffer.clear();
LineBufferReader { rdr, line_buffer }
}
/// The absolute byte offset which corresponds to the starting offsets
/// of the data returned by `buffer` relative to the beginning of the
/// underlying reader's contents. As such, this offset does not generally
/// correspond to an offset in memory. It is typically used for reporting
/// purposes. It can also be used for counting the number of bytes that
/// have been searched.
pub fn absolute_byte_offset(&self) -> u64 {
self.line_buffer.absolute_byte_offset()
}
/// If binary data was detected, then this returns the absolute byte offset
/// at which binary data was initially found.
pub fn binary_byte_offset(&self) -> Option<u64> {
self.line_buffer.binary_byte_offset()
}
/// Fill the contents of this buffer by discarding the part of the buffer
/// that has been consumed. The free space created by discarding the
/// consumed part of the buffer is then filled with new data from the
/// reader.
///
/// If EOF is reached, then `false` is returned. Otherwise, `true` is
/// returned. (Note that if this line buffer's binary detection is set to
/// `Quit`, then the presence of binary data will cause this buffer to
/// behave as if it had seen EOF at the first occurrence of binary data.)
///
/// This forwards any errors returned by the underlying reader, and will
/// also return an error if the buffer must be expanded past its allocation
/// limit, as governed by the buffer allocation strategy.
pub fn fill(&mut self) -> Result<bool, io::Error> {
self.line_buffer.fill(&mut self.rdr)
}
/// Return the contents of this buffer.
pub fn buffer(&self) -> &[u8] {
self.line_buffer.buffer()
}
/// Consume the number of bytes provided. This must be less than or equal
/// to the number of bytes returned by `buffer`.
pub fn consume(&mut self, amt: usize) {
self.line_buffer.consume(amt);
}
/// Consumes the remainder of the buffer. Subsequent calls to `buffer` are
/// guaranteed to return an empty slice until the buffer is refilled.
///
/// This is a convenience function for `consume(buffer.len())`.
#[cfg(test)]
fn consume_all(&mut self) {
self.line_buffer.consume_all();
}
}
/// A line buffer manages a (typically fixed) buffer for holding lines.
///
/// Callers should create line buffers sparingly and reuse them when possible.
/// Line buffers cannot be used directly, but instead must be used via the
/// LineBufferReader.
#[derive(Clone, Debug)]
pub struct LineBuffer {
/// The configuration of this buffer.
config: Config,
/// The primary buffer with which to hold data.
buf: Vec<u8>,
/// The current position of this buffer. This is always a valid sliceable
/// index into `buf`, and its maximum value is the length of `buf`.
pos: usize,
/// The end position of searchable content in this buffer. This is either
/// set to just after the final line terminator in the buffer, or to just
/// after the end of the last byte emitted by the reader when the reader
/// has been exhausted.
last_lineterm: usize,
/// The end position of the buffer. This is always greater than or equal to
/// lastnl. The bytes between lastnl and end, if any, always correspond to
/// a partial line.
end: usize,
/// The absolute byte offset corresponding to `pos`. This is most typically
/// not a valid index into addressable memory, but rather, an offset that
/// is relative to all data that passes through a line buffer (since
/// construction or since the last time `clear` was called).
///
/// When the line buffer reaches EOF, this is set to the position just
/// after the last byte read from the underlying reader. That is, it
/// becomes the total count of bytes that have been read.
absolute_byte_offset: u64,
/// If binary data was found, this records the absolute byte offset at
/// which it was first detected.
binary_byte_offset: Option<u64>,
}
impl LineBuffer {
/// Reset this buffer, such that it can be used with a new reader.
fn clear(&mut self) {
self.pos = 0;
self.last_lineterm = 0;
self.end = 0;
self.absolute_byte_offset = 0;
self.binary_byte_offset = None;
}
/// The absolute byte offset which corresponds to the starting offsets
/// of the data returned by `buffer` relative to the beginning of the
/// reader's contents. As such, this offset does not generally correspond
/// to an offset in memory. It is typically used for reporting purposes,
/// particularly in error messages.
///
/// This is reset to `0` when `clear` is called.
fn absolute_byte_offset(&self) -> u64 {
self.absolute_byte_offset
}
/// If binary data was detected, then this returns the absolute byte offset
/// at which binary data was initially found.
fn binary_byte_offset(&self) -> Option<u64> {
self.binary_byte_offset
}
/// Return the contents of this buffer.
fn buffer(&self) -> &[u8] {
&self.buf[self.pos..self.last_lineterm]
}
/// Return the contents of the free space beyond the end of the buffer as
/// a mutable slice.
fn free_buffer(&mut self) -> &mut [u8] {
&mut self.buf[self.end..]
}
/// Consume the number of bytes provided. This must be less than or equal
/// to the number of bytes returned by `buffer`.
fn consume(&mut self, amt: usize) {
assert!(amt <= self.buffer().len());
self.pos += amt;
self.absolute_byte_offset += amt as u64;
}
/// Consumes the remainder of the buffer. Subsequent calls to `buffer` are
/// guaranteed to return an empty slice until the buffer is refilled.
///
/// This is a convenience function for `consume(buffer.len())`.
#[cfg(test)]
fn consume_all(&mut self) {
let amt = self.buffer().len();
self.consume(amt);
}
/// Fill the contents of this buffer by discarding the part of the buffer
/// that has been consumed. The free space created by discarding the
/// consumed part of the buffer is then filled with new data from the given
/// reader.
///
/// Callers should provide the same reader to this line buffer in
/// subsequent calls to fill. A different reader can only be used
/// immediately following a call to `clear`.
///
/// If EOF is reached, then `false` is returned. Otherwise, `true` is
/// returned. (Note that if this line buffer's binary detection is set to
/// `Quit`, then the presence of binary data will cause this buffer to
/// behave as if it had seen EOF.)
///
/// This forwards any errors returned by `rdr`, and will also return an
/// error if the buffer must be expanded past its allocation limit, as
/// governed by the buffer allocation strategy.
fn fill<R: io::Read>(&mut self, mut rdr: R) -> Result<bool, io::Error> {
// If the binary detection heuristic tells us to quit once binary data
// has been observed, then we no longer read new data and reach EOF
// once the current buffer has been consumed.
if self.config.binary.is_quit() && self.binary_byte_offset.is_some() {
return Ok(!self.buffer().is_empty());
}
self.roll();
assert_eq!(self.pos, 0);
loop {
self.ensure_capacity()?;
let readlen = rdr.read(self.free_buffer())?;
if readlen == 0 {
// We're only done reading for good once the caller has
// consumed everything.
self.last_lineterm = self.end;
return Ok(!self.buffer().is_empty());
}
// Get a mutable view into the bytes we've just read. These are
// the bytes that we do binary detection on, and also the bytes we
// search to find the last line terminator. We need a mutable slice
// in the case of binary conversion.
let oldend = self.end;
self.end += readlen;
let newbytes = &mut self.buf[oldend..self.end];
// Binary detection.
match self.config.binary {
BinaryDetection::None => {} // nothing to do
BinaryDetection::Quit(byte) => {
if let Some(i) = memchr(byte, newbytes) {
self.end = oldend + i;
self.last_lineterm = self.end;
self.binary_byte_offset =
Some(self.absolute_byte_offset + self.end as u64);
// If the first byte in our buffer is a binary byte,
// then our buffer is empty and we should report as
// such to the caller.
return Ok(self.pos < self.end);
}
}
BinaryDetection::Convert(byte) => {
if let Some(i) = replace_bytes(
newbytes,
byte,
self.config.lineterm,
) {
// Record only the first binary offset.
if self.binary_byte_offset.is_none() {
self.binary_byte_offset =
Some(self.absolute_byte_offset
+ (oldend + i) as u64);
}
}
}
}
// Update our `last_lineterm` positions if we read one.
if let Some(i) = memrchr(self.config.lineterm, newbytes) {
self.last_lineterm = oldend + i + 1;
return Ok(true);
}
// At this point, if we couldn't find a line terminator, then we
// don't have a complete line. Therefore, we try to read more!
}
}
/// Roll the unconsumed parts of the buffer to the front.
///
/// This operation is idempotent.
///
/// After rolling, `last_lineterm` and `end` point to the same location,
/// and `pos` is always set to `0`.
fn roll(&mut self) {
if self.pos == self.end {
self.pos = 0;
self.last_lineterm = 0;
self.end = 0;
return;
}
assert!(self.pos < self.end && self.end <= self.buf.len());
let roll_len = self.end - self.pos;
unsafe {
// SAFETY: A buffer contains Copy data, so there's no problem
// moving it around. Safety also depends on our indices being
// in bounds, which they should always be, and we enforce with
// an assert above.
//
// TODO: It seems like it should be possible to do this in safe
// code that results in the same codegen.
ptr::copy(
self.buf[self.pos..].as_ptr(),
self.buf.as_mut_ptr(),
roll_len,
);
}
self.pos = 0;
self.last_lineterm = roll_len;
self.end = self.last_lineterm;
}
/// Ensures that the internal buffer has a non-zero amount of free space
/// in which to read more data. If there is no free space, then more is
/// allocated. If the allocation must exceed the configured limit, then
/// this returns an error.
fn ensure_capacity(&mut self) -> Result<(), io::Error> {
if !self.free_buffer().is_empty() {
return Ok(());
}
// `len` is used for computing the next allocation size. The capacity
// is permitted to start at `0`, so we make sure it's at least `1`.
let len = cmp::max(1, self.buf.len());
let additional = match self.config.buffer_alloc {
BufferAllocation::Eager => len * 2,
BufferAllocation::Error(limit) => {
let used = self.buf.len() - self.config.capacity;
let n = cmp::min(len * 2, limit - used);
if n == 0 {
return Err(alloc_error(self.config.capacity + limit));
}
n
}
};
assert!(additional > 0);
let newlen = self.buf.len() + additional;
self.buf.resize(newlen, 0);
assert!(!self.free_buffer().is_empty());
Ok(())
}
}
/// Replaces `src` with `replacement` in bytes.
fn replace_bytes(bytes: &mut [u8], src: u8, replacement: u8) -> Option<usize> {
if src == replacement {
return None;
}
let mut first_pos = None;
let mut pos = 0;
while let Some(i) = memchr(src, &bytes[pos..]).map(|i| pos + i) {
if first_pos.is_none() {
first_pos = Some(i);
}
bytes[i] = replacement;
pos = i + 1;
while bytes.get(pos) == Some(&src) {
bytes[pos] = replacement;
pos += 1;
}
}
first_pos
}
#[cfg(test)]
mod tests {
use std::str;
use super::*;
const SHERLOCK: &'static str = "\
For the Doctor Watsons of this world, as opposed to the Sherlock
Holmeses, success in the province of detective work must always
be, to a very large extent, the result of luck. Sherlock Holmes
can extract a clew from a wisp of straw or a flake of cigar ash;
but Doctor Watson has to have it taken out for him and dusted,
and exhibited clearly, with a label attached.\
";
fn s(slice: &str) -> String {
slice.to_string()
}
fn btos(slice: &[u8]) -> &str {
str::from_utf8(slice).unwrap()
}
fn replace_str(
slice: &str,
src: u8,
replacement: u8,
) -> (String, Option<usize>) {
let mut dst = slice.to_string().into_bytes();
let result = replace_bytes(&mut dst, src, replacement);
(String::from_utf8(dst).unwrap(), result)
}
#[test]
fn replace() {
assert_eq!(replace_str("abc", b'b', b'z'), (s("azc"), Some(1)));
assert_eq!(replace_str("abb", b'b', b'z'), (s("azz"), Some(1)));
assert_eq!(replace_str("aba", b'a', b'z'), (s("zbz"), Some(0)));
assert_eq!(replace_str("bbb", b'b', b'z'), (s("zzz"), Some(0)));
assert_eq!(replace_str("bac", b'b', b'z'), (s("zac"), Some(0)));
}
#[test]
fn buffer_basics1() {
let bytes = "homer\nlisa\nmaggie";
let mut linebuf = LineBufferBuilder::new().build();
let mut rdr = LineBufferReader::new(bytes.as_bytes(), &mut linebuf);
assert!(rdr.buffer().is_empty());
assert!(rdr.fill().unwrap());
assert_eq!(btos(rdr.buffer()), "homer\nlisa\n");
assert_eq!(rdr.absolute_byte_offset(), 0);
rdr.consume(5);
assert_eq!(rdr.absolute_byte_offset(), 5);
rdr.consume_all();
assert_eq!(rdr.absolute_byte_offset(), 11);
assert!(rdr.fill().unwrap());
assert_eq!(btos(rdr.buffer()), "maggie");
rdr.consume_all();
assert!(!rdr.fill().unwrap());
assert_eq!(rdr.absolute_byte_offset(), bytes.len() as u64);
assert_eq!(rdr.binary_byte_offset(), None);
}
#[test]
fn buffer_basics2() {
let bytes = "homer\nlisa\nmaggie\n";
let mut linebuf = LineBufferBuilder::new().build();
let mut rdr = LineBufferReader::new(bytes.as_bytes(), &mut linebuf);
assert!(rdr.fill().unwrap());
assert_eq!(btos(rdr.buffer()), "homer\nlisa\nmaggie\n");
rdr.consume_all();
assert!(!rdr.fill().unwrap());
assert_eq!(rdr.absolute_byte_offset(), bytes.len() as u64);
assert_eq!(rdr.binary_byte_offset(), None);
}
#[test]
fn buffer_basics3() {
let bytes = "\n";
let mut linebuf = LineBufferBuilder::new().build();
let mut rdr = LineBufferReader::new(bytes.as_bytes(), &mut linebuf);
assert!(rdr.fill().unwrap());
assert_eq!(btos(rdr.buffer()), "\n");
rdr.consume_all();
assert!(!rdr.fill().unwrap());
assert_eq!(rdr.absolute_byte_offset(), bytes.len() as u64);
assert_eq!(rdr.binary_byte_offset(), None);
}
#[test]
fn buffer_basics4() {
let bytes = "\n\n";
let mut linebuf = LineBufferBuilder::new().build();
let mut rdr = LineBufferReader::new(bytes.as_bytes(), &mut linebuf);
assert!(rdr.fill().unwrap());
assert_eq!(btos(rdr.buffer()), "\n\n");
rdr.consume_all();
assert!(!rdr.fill().unwrap());
assert_eq!(rdr.absolute_byte_offset(), bytes.len() as u64);
assert_eq!(rdr.binary_byte_offset(), None);
}
#[test]
fn buffer_empty() {
let bytes = "";
let mut linebuf = LineBufferBuilder::new().build();
let mut rdr = LineBufferReader::new(bytes.as_bytes(), &mut linebuf);
assert!(!rdr.fill().unwrap());
assert_eq!(rdr.absolute_byte_offset(), bytes.len() as u64);
assert_eq!(rdr.binary_byte_offset(), None);
}
#[test]
fn buffer_zero_capacity() {
let bytes = "homer\nlisa\nmaggie";
let mut linebuf = LineBufferBuilder::new().capacity(0).build();
let mut rdr = LineBufferReader::new(bytes.as_bytes(), &mut linebuf);
while rdr.fill().unwrap() {
rdr.consume_all();
}
assert_eq!(rdr.absolute_byte_offset(), bytes.len() as u64);
assert_eq!(rdr.binary_byte_offset(), None);
}
#[test]
fn buffer_small_capacity() {
let bytes = "homer\nlisa\nmaggie";
let mut linebuf = LineBufferBuilder::new().capacity(1).build();
let mut rdr = LineBufferReader::new(bytes.as_bytes(), &mut linebuf);
let mut got = vec![];
while rdr.fill().unwrap() {
got.extend(rdr.buffer());
rdr.consume_all();
}
assert_eq!(bytes, btos(&got));
assert_eq!(rdr.absolute_byte_offset(), bytes.len() as u64);
assert_eq!(rdr.binary_byte_offset(), None);
}
#[test]
fn buffer_limited_capacity1() {
let bytes = "homer\nlisa\nmaggie";
let mut linebuf = LineBufferBuilder::new()
.capacity(1)
.buffer_alloc(BufferAllocation::Error(5))
.build();
let mut rdr = LineBufferReader::new(bytes.as_bytes(), &mut linebuf);
assert!(rdr.fill().unwrap());
assert_eq!(btos(rdr.buffer()), "homer\n");
rdr.consume_all();
assert!(rdr.fill().unwrap());
assert_eq!(btos(rdr.buffer()), "lisa\n");
rdr.consume_all();
// This returns an error because while we have just enough room to
// store maggie in the buffer, we *don't* have enough room to read one
// more byte, so we don't know whether we're at EOF or not, and
// therefore must give up.
assert!(rdr.fill().is_err());
// We can mush on though!
assert_eq!(btos(rdr.buffer()), "m");
rdr.consume_all();
assert!(rdr.fill().unwrap());
assert_eq!(btos(rdr.buffer()), "aggie");
rdr.consume_all();
assert!(!rdr.fill().unwrap());
}
#[test]
fn buffer_limited_capacity2() {
let bytes = "homer\nlisa\nmaggie";
let mut linebuf = LineBufferBuilder::new()
.capacity(1)
.buffer_alloc(BufferAllocation::Error(6))
.build();
let mut rdr = LineBufferReader::new(bytes.as_bytes(), &mut linebuf);
assert!(rdr.fill().unwrap());
assert_eq!(btos(rdr.buffer()), "homer\n");
rdr.consume_all();
assert!(rdr.fill().unwrap());
assert_eq!(btos(rdr.buffer()), "lisa\n");
rdr.consume_all();
// We have just enough space.
assert!(rdr.fill().unwrap());
assert_eq!(btos(rdr.buffer()), "maggie");
rdr.consume_all();
assert!(!rdr.fill().unwrap());
}
#[test]
fn buffer_limited_capacity3() {
let bytes = "homer\nlisa\nmaggie";
let mut linebuf = LineBufferBuilder::new()
.capacity(1)
.buffer_alloc(BufferAllocation::Error(0))
.build();
let mut rdr = LineBufferReader::new(bytes.as_bytes(), &mut linebuf);
assert!(rdr.fill().is_err());
assert_eq!(btos(rdr.buffer()), "");
}
#[test]
fn buffer_binary_none() {
let bytes = "homer\nli\x00sa\nmaggie\n";
let mut linebuf = LineBufferBuilder::new().build();
let mut rdr = LineBufferReader::new(bytes.as_bytes(), &mut linebuf);
assert!(rdr.buffer().is_empty());
assert!(rdr.fill().unwrap());
assert_eq!(btos(rdr.buffer()), "homer\nli\x00sa\nmaggie\n");
rdr.consume_all();
assert!(!rdr.fill().unwrap());
assert_eq!(rdr.absolute_byte_offset(), bytes.len() as u64);
assert_eq!(rdr.binary_byte_offset(), None);
}
#[test]
fn buffer_binary_quit1() {
let bytes = "homer\nli\x00sa\nmaggie\n";
let mut linebuf = LineBufferBuilder::new()
.binary_detection(BinaryDetection::Quit(b'\x00'))
.build();
let mut rdr = LineBufferReader::new(bytes.as_bytes(), &mut linebuf);
assert!(rdr.buffer().is_empty());
assert!(rdr.fill().unwrap());
assert_eq!(btos(rdr.buffer()), "homer\nli");
rdr.consume_all();
assert!(!rdr.fill().unwrap());
assert_eq!(rdr.absolute_byte_offset(), 8);
assert_eq!(rdr.binary_byte_offset(), Some(8));
}
#[test]
fn buffer_binary_quit2() {
let bytes = "\x00homer\nlisa\nmaggie\n";
let mut linebuf = LineBufferBuilder::new()
.binary_detection(BinaryDetection::Quit(b'\x00'))
.build();
let mut rdr = LineBufferReader::new(bytes.as_bytes(), &mut linebuf);
assert!(!rdr.fill().unwrap());
assert_eq!(btos(rdr.buffer()), "");
assert_eq!(rdr.absolute_byte_offset(), 0);
assert_eq!(rdr.binary_byte_offset(), Some(0));
}
#[test]
fn buffer_binary_quit3() {
let bytes = "homer\nlisa\nmaggie\n\x00";
let mut linebuf = LineBufferBuilder::new()
.binary_detection(BinaryDetection::Quit(b'\x00'))
.build();
let mut rdr = LineBufferReader::new(bytes.as_bytes(), &mut linebuf);
assert!(rdr.buffer().is_empty());
assert!(rdr.fill().unwrap());
assert_eq!(btos(rdr.buffer()), "homer\nlisa\nmaggie\n");
rdr.consume_all();
assert!(!rdr.fill().unwrap());
assert_eq!(rdr.absolute_byte_offset(), bytes.len() as u64 - 1);
assert_eq!(rdr.binary_byte_offset(), Some(bytes.len() as u64 - 1));
}
#[test]
fn buffer_binary_quit4() {
let bytes = "homer\nlisa\nmaggie\x00\n";
let mut linebuf = LineBufferBuilder::new()
.binary_detection(BinaryDetection::Quit(b'\x00'))
.build();
let mut rdr = LineBufferReader::new(bytes.as_bytes(), &mut linebuf);
assert!(rdr.buffer().is_empty());
assert!(rdr.fill().unwrap());
assert_eq!(btos(rdr.buffer()), "homer\nlisa\nmaggie");
rdr.consume_all();
assert!(!rdr.fill().unwrap());
assert_eq!(rdr.absolute_byte_offset(), bytes.len() as u64 - 2);
assert_eq!(rdr.binary_byte_offset(), Some(bytes.len() as u64 - 2));
}
#[test]
fn buffer_binary_quit5() {
let mut linebuf = LineBufferBuilder::new()
.binary_detection(BinaryDetection::Quit(b'u'))
.build();
let mut rdr = LineBufferReader::new(SHERLOCK.as_bytes(), &mut linebuf);
assert!(rdr.buffer().is_empty());
assert!(rdr.fill().unwrap());
assert_eq!(btos(rdr.buffer()), "\
For the Doctor Watsons of this world, as opposed to the Sherlock
Holmeses, s\
");
rdr.consume_all();
assert!(!rdr.fill().unwrap());
assert_eq!(rdr.absolute_byte_offset(), 76);
assert_eq!(rdr.binary_byte_offset(), Some(76));
assert_eq!(SHERLOCK.as_bytes()[76], b'u');
}
#[test]
fn buffer_binary_convert1() {
let bytes = "homer\nli\x00sa\nmaggie\n";
let mut linebuf = LineBufferBuilder::new()
.binary_detection(BinaryDetection::Convert(b'\x00'))
.build();
let mut rdr = LineBufferReader::new(bytes.as_bytes(), &mut linebuf);
assert!(rdr.buffer().is_empty());
assert!(rdr.fill().unwrap());
assert_eq!(btos(rdr.buffer()), "homer\nli\nsa\nmaggie\n");
rdr.consume_all();
assert!(!rdr.fill().unwrap());
assert_eq!(rdr.absolute_byte_offset(), bytes.len() as u64);
assert_eq!(rdr.binary_byte_offset(), Some(8));
}
#[test]
fn buffer_binary_convert2() {
let bytes = "\x00homer\nlisa\nmaggie\n";
let mut linebuf = LineBufferBuilder::new()
.binary_detection(BinaryDetection::Convert(b'\x00'))
.build();
let mut rdr = LineBufferReader::new(bytes.as_bytes(), &mut linebuf);
assert!(rdr.buffer().is_empty());
assert!(rdr.fill().unwrap());
assert_eq!(btos(rdr.buffer()), "\nhomer\nlisa\nmaggie\n");
rdr.consume_all();
assert!(!rdr.fill().unwrap());
assert_eq!(rdr.absolute_byte_offset(), bytes.len() as u64);
assert_eq!(rdr.binary_byte_offset(), Some(0));
}
#[test]
fn buffer_binary_convert3() {
let bytes = "homer\nlisa\nmaggie\n\x00";
let mut linebuf = LineBufferBuilder::new()
.binary_detection(BinaryDetection::Convert(b'\x00'))
.build();
let mut rdr = LineBufferReader::new(bytes.as_bytes(), &mut linebuf);
assert!(rdr.buffer().is_empty());
assert!(rdr.fill().unwrap());
assert_eq!(btos(rdr.buffer()), "homer\nlisa\nmaggie\n\n");
rdr.consume_all();
assert!(!rdr.fill().unwrap());
assert_eq!(rdr.absolute_byte_offset(), bytes.len() as u64);
assert_eq!(rdr.binary_byte_offset(), Some(bytes.len() as u64 - 1));
}
#[test]
fn buffer_binary_convert4() {
let bytes = "homer\nlisa\nmaggie\x00\n";
let mut linebuf = LineBufferBuilder::new()
.binary_detection(BinaryDetection::Convert(b'\x00'))
.build();
let mut rdr = LineBufferReader::new(bytes.as_bytes(), &mut linebuf);
assert!(rdr.buffer().is_empty());
assert!(rdr.fill().unwrap());
assert_eq!(btos(rdr.buffer()), "homer\nlisa\nmaggie\n\n");
rdr.consume_all();
assert!(!rdr.fill().unwrap());
assert_eq!(rdr.absolute_byte_offset(), bytes.len() as u64);
assert_eq!(rdr.binary_byte_offset(), Some(bytes.len() as u64 - 2));
}
}

453
grep-searcher/src/lines.rs Normal file
View File

@ -0,0 +1,453 @@
/*!
A collection of routines for performing operations on lines.
*/
use bytecount;
use memchr::{memchr, memrchr};
use grep_matcher::{LineTerminator, Match};
/// An iterator over lines in a particular slice of bytes.
///
/// Line terminators are considered part of the line they terminate. All lines
/// yielded by the iterator are guaranteed to be non-empty.
///
/// `'b` refers to the lifetime of the underlying bytes.
#[derive(Debug)]
pub struct LineIter<'b> {
bytes: &'b [u8],
stepper: LineStep,
}
impl<'b> LineIter<'b> {
/// Create a new line iterator that yields lines in the given bytes that
/// are terminated by `line_term`.
pub fn new(line_term: u8, bytes: &'b [u8]) -> LineIter<'b> {
LineIter {
bytes: bytes,
stepper: LineStep::new(line_term, 0, bytes.len()),
}
}
}
impl<'b> Iterator for LineIter<'b> {
type Item = &'b [u8];
fn next(&mut self) -> Option<&'b [u8]> {
self.stepper.next_match(self.bytes).map(|m| &self.bytes[m])
}
}
/// An explicit iterator over lines in a particular slice of bytes.
///
/// This iterator avoids borrowing the bytes themselves, and instead requires
/// callers to explicitly provide the bytes when moving through the iterator.
/// While not idiomatic, this provides a simple way of iterating over lines
/// that doesn't require borrowing the slice itself, which can be convenient.
///
/// Line terminators are considered part of the line they terminate. All lines
/// yielded by the iterator are guaranteed to be non-empty.
#[derive(Debug)]
pub struct LineStep {
line_term: u8,
pos: usize,
end: usize,
}
impl LineStep {
/// Create a new line iterator over the given range of bytes using the
/// given line terminator.
///
/// Callers should provide the actual bytes for each call to `next`. The
/// same slice must be provided to each call.
///
/// This panics if `start` is not less than or equal to `end`.
pub fn new(line_term: u8, start: usize, end: usize) -> LineStep {
LineStep { line_term, pos: start, end: end }
}
/// Return the start and end position of the next line in the given bytes.
///
/// The caller must past exactly the same slice of bytes for each call to
/// `next`.
///
/// The range returned includes the line terminator. Ranges are always
/// non-empty.
pub fn next(&mut self, mut bytes: &[u8]) -> Option<(usize, usize)> {
bytes = &bytes[..self.end];
match memchr(self.line_term, &bytes[self.pos..]) {
None => {
if self.pos < bytes.len() {
let m = (self.pos, bytes.len());
assert!(m.0 <= m.1);
self.pos = m.1;
Some(m)
} else {
None
}
}
Some(line_end) => {
let m = (self.pos, self.pos + line_end + 1);
assert!(m.0 <= m.1);
self.pos = m.1;
Some(m)
}
}
}
/// Like next, but returns a `Match` instead of a tuple.
pub(crate) fn next_match(&mut self, bytes: &[u8]) -> Option<Match> {
self.next(bytes).map(|(s, e)| Match::new(s, e))
}
}
/// Count the number of occurrences of `line_term` in `bytes`.
pub fn count(bytes: &[u8], line_term: u8) -> u64 {
bytecount::count(bytes, line_term) as u64
}
/// Given a line that possibly ends with a terminator, return that line without
/// the terminator.
pub fn without_terminator(bytes: &[u8], line_term: LineTerminator) -> &[u8] {
let line_term = line_term.as_bytes();
if bytes.get(bytes.len().saturating_sub(line_term.len())..) == Some(line_term) {
return &bytes[..bytes.len() - line_term.len()];
}
bytes
}
/// Return the start and end offsets of the lines containing the given range
/// of bytes.
///
/// Line terminators are considered part of the line they terminate.
pub fn locate(
bytes: &[u8],
line_term: u8,
range: Match,
) -> Match {
let line_start = memrchr(line_term, &bytes[0..range.start()])
.map_or(0, |i| i + 1);
let line_end =
if range.end() > line_start && bytes[range.end() - 1] == line_term {
range.end()
} else {
memchr(line_term, &bytes[range.end()..])
.map_or(bytes.len(), |i| range.end() + i + 1)
};
Match::new(line_start, line_end)
}
/// Returns the minimal starting offset of the line that occurs `count` lines
/// before the last line in `bytes`.
///
/// Lines are terminated by `line_term`. If `count` is zero, then this returns
/// the starting offset of the last line in `bytes`.
///
/// If `bytes` ends with a line terminator, then the terminator itself is
/// considered part of the last line.
pub fn preceding(bytes: &[u8], line_term: u8, count: usize) -> usize {
preceding_by_pos(bytes, bytes.len(), line_term, count)
}
/// Returns the minimal starting offset of the line that occurs `count` lines
/// before the line containing `pos`. Lines are terminated by `line_term`.
/// If `count` is zero, then this returns the starting offset of the line
/// containing `pos`.
///
/// If `pos` points just past a line terminator, then it is considered part of
/// the line that it terminates. For example, given `bytes = b"abc\nxyz\n"`
/// and `pos = 7`, `preceding(bytes, pos, b'\n', 0)` returns `4` (as does `pos
/// = 8`) and `preceding(bytes, pos, `b'\n', 1)` returns `0`.
fn preceding_by_pos(
bytes: &[u8],
mut pos: usize,
line_term: u8,
mut count: usize,
) -> usize {
if pos == 0 {
return 0;
} else if bytes[pos - 1] == b'\n' {
pos -= 1;
}
loop {
match memrchr(line_term, &bytes[..pos]) {
None => {
return 0;
}
Some(i) => {
if count == 0 {
return i + 1;
} else if i == 0 {
return 0;
}
count -= 1;
pos = i;
}
}
}
}
#[cfg(test)]
mod tests {
use std::ops::Range;
use std::str;
use grep_matcher::Match;
use super::*;
const SHERLOCK: &'static str = "\
For the Doctor Watsons of this world, as opposed to the Sherlock
Holmeses, success in the province of detective work must always
be, to a very large extent, the result of luck. Sherlock Holmes
can extract a clew from a wisp of straw or a flake of cigar ash;
but Doctor Watson has to have it taken out for him and dusted,
and exhibited clearly, with a label attached.\
";
fn m(start: usize, end: usize) -> Match {
Match::new(start, end)
}
fn lines(text: &str) -> Vec<&str> {
let mut results = vec![];
let mut it = LineStep::new(b'\n', 0, text.len());
while let Some(m) = it.next_match(text.as_bytes()) {
results.push(&text[m]);
}
results
}
fn line_ranges(text: &str) -> Vec<Range<usize>> {
let mut results = vec![];
let mut it = LineStep::new(b'\n', 0, text.len());
while let Some(m) = it.next_match(text.as_bytes()) {
results.push(m.start()..m.end());
}
results
}
fn prev(text: &str, pos: usize, count: usize) -> usize {
preceding_by_pos(text.as_bytes(), pos, b'\n', count)
}
fn loc(text: &str, start: usize, end: usize) -> Match {
locate(text.as_bytes(), b'\n', Match::new(start, end))
}
#[test]
fn line_count() {
assert_eq!(0, count(b"", b'\n'));
assert_eq!(1, count(b"\n", b'\n'));
assert_eq!(2, count(b"\n\n", b'\n'));
assert_eq!(2, count(b"a\nb\nc", b'\n'));
}
#[test]
fn line_locate() {
let t = SHERLOCK;
let lines = line_ranges(t);
assert_eq!(
loc(t, lines[0].start, lines[0].end),
m(lines[0].start, lines[0].end));
assert_eq!(
loc(t, lines[0].start + 1, lines[0].end),
m(lines[0].start, lines[0].end));
assert_eq!(
loc(t, lines[0].end - 1, lines[0].end),
m(lines[0].start, lines[0].end));
assert_eq!(
loc(t, lines[0].end, lines[0].end),
m(lines[1].start, lines[1].end));
assert_eq!(
loc(t, lines[5].start, lines[5].end),
m(lines[5].start, lines[5].end));
assert_eq!(
loc(t, lines[5].start + 1, lines[5].end),
m(lines[5].start, lines[5].end));
assert_eq!(
loc(t, lines[5].end - 1, lines[5].end),
m(lines[5].start, lines[5].end));
assert_eq!(
loc(t, lines[5].end, lines[5].end),
m(lines[5].start, lines[5].end));
}
#[test]
fn line_locate_weird() {
assert_eq!(loc("", 0, 0), m(0, 0));
assert_eq!(loc("\n", 0, 1), m(0, 1));
assert_eq!(loc("\n", 1, 1), m(1, 1));
assert_eq!(loc("\n\n", 0, 0), m(0, 1));
assert_eq!(loc("\n\n", 0, 1), m(0, 1));
assert_eq!(loc("\n\n", 1, 1), m(1, 2));
assert_eq!(loc("\n\n", 1, 2), m(1, 2));
assert_eq!(loc("\n\n", 2, 2), m(2, 2));
assert_eq!(loc("a\nb\nc", 0, 1), m(0, 2));
assert_eq!(loc("a\nb\nc", 1, 2), m(0, 2));
assert_eq!(loc("a\nb\nc", 2, 3), m(2, 4));
assert_eq!(loc("a\nb\nc", 3, 4), m(2, 4));
assert_eq!(loc("a\nb\nc", 4, 5), m(4, 5));
assert_eq!(loc("a\nb\nc", 5, 5), m(4, 5));
}
#[test]
fn line_iter() {
assert_eq!(lines("abc"), vec!["abc"]);
assert_eq!(lines("abc\n"), vec!["abc\n"]);
assert_eq!(lines("abc\nxyz"), vec!["abc\n", "xyz"]);
assert_eq!(lines("abc\nxyz\n"), vec!["abc\n", "xyz\n"]);
assert_eq!(lines("abc\n\n"), vec!["abc\n", "\n"]);
assert_eq!(lines("abc\n\n\n"), vec!["abc\n", "\n", "\n"]);
assert_eq!(lines("abc\n\nxyz"), vec!["abc\n", "\n", "xyz"]);
assert_eq!(lines("abc\n\nxyz\n"), vec!["abc\n", "\n", "xyz\n"]);
assert_eq!(lines("abc\nxyz\n\n"), vec!["abc\n", "xyz\n", "\n"]);
assert_eq!(lines("\n"), vec!["\n"]);
assert_eq!(lines(""), Vec::<&str>::new());
}
#[test]
fn line_iter_empty() {
let mut it = LineStep::new(b'\n', 0, 0);
assert_eq!(it.next(b"abc"), None);
}
#[test]
fn preceding_lines_doc() {
// These are the examples mentions in the documentation of `preceding`.
let bytes = b"abc\nxyz\n";
assert_eq!(4, preceding_by_pos(bytes, 7, b'\n', 0));
assert_eq!(4, preceding_by_pos(bytes, 8, b'\n', 0));
assert_eq!(0, preceding_by_pos(bytes, 7, b'\n', 1));
assert_eq!(0, preceding_by_pos(bytes, 8, b'\n', 1));
}
#[test]
fn preceding_lines_sherlock() {
let t = SHERLOCK;
let lines = line_ranges(t);
// The following tests check the count == 0 case, i.e., finding the
// beginning of the line containing the given position.
assert_eq!(0, prev(t, 0, 0));
assert_eq!(0, prev(t, 1, 0));
// The line terminator is addressed by `end-1` and terminates the line
// it is part of.
assert_eq!(0, prev(t, lines[0].end - 1, 0));
assert_eq!(lines[0].start, prev(t, lines[0].end, 0));
// The end position of line addresses the byte immediately following a
// line terminator, which puts it on the following line.
assert_eq!(lines[1].start, prev(t, lines[0].end + 1, 0));
// Now tests for count > 0.
assert_eq!(0, prev(t, 0, 1));
assert_eq!(0, prev(t, 0, 2));
assert_eq!(0, prev(t, 1, 1));
assert_eq!(0, prev(t, 1, 2));
assert_eq!(0, prev(t, lines[0].end - 1, 1));
assert_eq!(0, prev(t, lines[0].end - 1, 2));
assert_eq!(0, prev(t, lines[0].end, 1));
assert_eq!(0, prev(t, lines[0].end, 2));
assert_eq!(lines[3].start, prev(t, lines[4].end - 1, 1));
assert_eq!(lines[3].start, prev(t, lines[4].end, 1));
assert_eq!(lines[4].start, prev(t, lines[4].end + 1, 1));
// The last line has no line terminator.
assert_eq!(lines[5].start, prev(t, lines[5].end, 0));
assert_eq!(lines[5].start, prev(t, lines[5].end - 1, 0));
assert_eq!(lines[4].start, prev(t, lines[5].end, 1));
assert_eq!(lines[0].start, prev(t, lines[5].end, 5));
}
#[test]
fn preceding_lines_short() {
let t = "a\nb\nc\nd\ne\nf\n";
let lines = line_ranges(t);
assert_eq!(12, t.len());
assert_eq!(lines[5].start, prev(t, lines[5].end, 0));
assert_eq!(lines[4].start, prev(t, lines[5].end, 1));
assert_eq!(lines[3].start, prev(t, lines[5].end, 2));
assert_eq!(lines[2].start, prev(t, lines[5].end, 3));
assert_eq!(lines[1].start, prev(t, lines[5].end, 4));
assert_eq!(lines[0].start, prev(t, lines[5].end, 5));
assert_eq!(lines[0].start, prev(t, lines[5].end, 6));
assert_eq!(lines[5].start, prev(t, lines[5].end - 1, 0));
assert_eq!(lines[4].start, prev(t, lines[5].end - 1, 1));
assert_eq!(lines[3].start, prev(t, lines[5].end - 1, 2));
assert_eq!(lines[2].start, prev(t, lines[5].end - 1, 3));
assert_eq!(lines[1].start, prev(t, lines[5].end - 1, 4));
assert_eq!(lines[0].start, prev(t, lines[5].end - 1, 5));
assert_eq!(lines[0].start, prev(t, lines[5].end - 1, 6));
assert_eq!(lines[4].start, prev(t, lines[5].start, 0));
assert_eq!(lines[3].start, prev(t, lines[5].start, 1));
assert_eq!(lines[2].start, prev(t, lines[5].start, 2));
assert_eq!(lines[1].start, prev(t, lines[5].start, 3));
assert_eq!(lines[0].start, prev(t, lines[5].start, 4));
assert_eq!(lines[0].start, prev(t, lines[5].start, 5));
assert_eq!(lines[3].start, prev(t, lines[4].end - 1, 1));
assert_eq!(lines[2].start, prev(t, lines[4].start, 1));
assert_eq!(lines[2].start, prev(t, lines[3].end - 1, 1));
assert_eq!(lines[1].start, prev(t, lines[3].start, 1));
assert_eq!(lines[1].start, prev(t, lines[2].end - 1, 1));
assert_eq!(lines[0].start, prev(t, lines[2].start, 1));
assert_eq!(lines[0].start, prev(t, lines[1].end - 1, 1));
assert_eq!(lines[0].start, prev(t, lines[1].start, 1));
assert_eq!(lines[0].start, prev(t, lines[0].end - 1, 1));
assert_eq!(lines[0].start, prev(t, lines[0].start, 1));
}
#[test]
fn preceding_lines_empty1() {
let t = "\n\n\nd\ne\nf\n";
let lines = line_ranges(t);
assert_eq!(9, t.len());
assert_eq!(lines[0].start, prev(t, lines[0].end, 0));
assert_eq!(lines[0].start, prev(t, lines[0].end, 1));
assert_eq!(lines[1].start, prev(t, lines[1].end, 0));
assert_eq!(lines[0].start, prev(t, lines[1].end, 1));
assert_eq!(lines[5].start, prev(t, lines[5].end, 0));
assert_eq!(lines[4].start, prev(t, lines[5].end, 1));
assert_eq!(lines[3].start, prev(t, lines[5].end, 2));
assert_eq!(lines[2].start, prev(t, lines[5].end, 3));
assert_eq!(lines[1].start, prev(t, lines[5].end, 4));
assert_eq!(lines[0].start, prev(t, lines[5].end, 5));
assert_eq!(lines[0].start, prev(t, lines[5].end, 6));
}
#[test]
fn preceding_lines_empty2() {
let t = "a\n\n\nd\ne\nf\n";
let lines = line_ranges(t);
assert_eq!(10, t.len());
assert_eq!(lines[0].start, prev(t, lines[0].end, 0));
assert_eq!(lines[0].start, prev(t, lines[0].end, 1));
assert_eq!(lines[1].start, prev(t, lines[1].end, 0));
assert_eq!(lines[0].start, prev(t, lines[1].end, 1));
assert_eq!(lines[5].start, prev(t, lines[5].end, 0));
assert_eq!(lines[4].start, prev(t, lines[5].end, 1));
assert_eq!(lines[3].start, prev(t, lines[5].end, 2));
assert_eq!(lines[2].start, prev(t, lines[5].end, 3));
assert_eq!(lines[1].start, prev(t, lines[5].end, 4));
assert_eq!(lines[0].start, prev(t, lines[5].end, 5));
assert_eq!(lines[0].start, prev(t, lines[5].end, 6));
}
}

View File

@ -0,0 +1,24 @@
#[cfg(test)]
#[macro_export]
macro_rules! assert_eq_printed {
($expected:expr, $got:expr, $($tt:tt)*) => {
let expected = &*$expected;
let got = &*$got;
let label = format!($($tt)*);
if expected != got {
panic!("
printed outputs differ! (label: {})
expected:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
{}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
got:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
{}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
", label, expected, got);
}
}
}

View File

@ -0,0 +1,577 @@
use std::cmp;
use memchr::memchr;
use grep_matcher::{LineMatchKind, Matcher};
use lines::{self, LineStep};
use line_buffer::BinaryDetection;
use searcher::{Config, Range, Searcher};
use sink::{
Sink, SinkError,
SinkFinish, SinkContext, SinkContextKind, SinkMatch,
};
#[derive(Debug)]
pub struct Core<'s, M: 's, S> {
config: &'s Config,
matcher: M,
searcher: &'s Searcher,
sink: S,
binary: bool,
pos: usize,
absolute_byte_offset: u64,
binary_byte_offset: Option<usize>,
line_number: Option<u64>,
last_line_counted: usize,
last_line_visited: usize,
after_context_left: usize,
has_sunk: bool,
}
impl<'s, M: Matcher, S: Sink> Core<'s, M, S> {
pub fn new(
searcher: &'s Searcher,
matcher: M,
sink: S,
binary: bool,
) -> Core<'s, M, S> {
let line_number =
if searcher.config.line_number {
Some(1)
} else {
None
};
let core = Core {
config: &searcher.config,
matcher: matcher,
searcher: searcher,
sink: sink,
binary: binary,
pos: 0,
absolute_byte_offset: 0,
binary_byte_offset: None,
line_number: line_number,
last_line_counted: 0,
last_line_visited: 0,
after_context_left: 0,
has_sunk: false,
};
if !core.searcher.multi_line_with_matcher(&core.matcher) {
if core.is_line_by_line_fast() {
trace!("searcher core: will use fast line searcher");
} else {
trace!("searcher core: will use slow line searcher");
}
}
core
}
pub fn pos(&self) -> usize {
self.pos
}
pub fn set_pos(&mut self, pos: usize) {
self.pos = pos;
}
pub fn binary_byte_offset(&self) -> Option<u64> {
self.binary_byte_offset.map(|offset| offset as u64)
}
pub fn matcher(&self) -> &M {
&self.matcher
}
pub fn matched(
&mut self,
buf: &[u8],
range: &Range,
) -> Result<bool, S::Error> {
self.sink_matched(buf, range)
}
pub fn begin(&mut self) -> Result<bool, S::Error> {
self.sink.begin(&self.searcher)
}
pub fn finish(
&mut self,
byte_count: u64,
binary_byte_offset: Option<u64>,
) -> Result<(), S::Error> {
self.sink.finish(
&self.searcher,
&SinkFinish {
byte_count,
binary_byte_offset,
})
}
pub fn match_by_line(&mut self, buf: &[u8]) -> Result<bool, S::Error> {
if self.is_line_by_line_fast() {
self.match_by_line_fast(buf)
} else {
self.match_by_line_slow(buf)
}
}
pub fn roll(&mut self, buf: &[u8]) -> usize {
let consumed =
if self.config.max_context() == 0 {
buf.len()
} else {
// It might seem like all we need to care about here is just
// the "before context," but in order to sink the context
// separator (when before_context==0 and after_context>0), we
// need to know something about the position of the previous
// line visited, even if we're at the beginning of the buffer.
let context_start = lines::preceding(
buf,
self.config.line_term.as_byte(),
self.config.max_context(),
);
let consumed = cmp::max(context_start, self.last_line_visited);
consumed
};
self.count_lines(buf, consumed);
self.absolute_byte_offset += consumed as u64;
self.last_line_counted = 0;
self.last_line_visited = 0;
self.set_pos(buf.len() - consumed);
consumed
}
pub fn detect_binary(&mut self, buf: &[u8], range: &Range) -> bool {
if self.binary_byte_offset.is_some() {
return true;
}
let binary_byte = match self.config.binary.0 {
BinaryDetection::Quit(b) => b,
_ => return false,
};
if let Some(i) = memchr(binary_byte, &buf[*range]) {
self.binary_byte_offset = Some(range.start() + i);
true
} else {
false
}
}
pub fn before_context_by_line(
&mut self,
buf: &[u8],
upto: usize,
) -> Result<bool, S::Error> {
if self.config.before_context == 0 {
return Ok(true);
}
let range = Range::new(self.last_line_visited, upto);
if range.is_empty() {
return Ok(true);
}
let before_context_start = range.start() + lines::preceding(
&buf[range],
self.config.line_term.as_byte(),
self.config.before_context - 1,
);
let range = Range::new(before_context_start, range.end());
let mut stepper = LineStep::new(
self.config.line_term.as_byte(),
range.start(),
range.end(),
);
while let Some(line) = stepper.next_match(buf) {
if !self.sink_break_context(line.start())? {
return Ok(false);
}
if !self.sink_before_context(buf, &line)? {
return Ok(false);
}
}
Ok(true)
}
pub fn after_context_by_line(
&mut self,
buf: &[u8],
upto: usize,
) -> Result<bool, S::Error> {
if self.after_context_left == 0 {
return Ok(true);
}
let range = Range::new(self.last_line_visited, upto);
let mut stepper = LineStep::new(
self.config.line_term.as_byte(),
range.start(),
range.end(),
);
while let Some(line) = stepper.next_match(buf) {
if !self.sink_after_context(buf, &line)? {
return Ok(false);
}
if self.after_context_left == 0 {
break;
}
}
Ok(true)
}
pub fn other_context_by_line(
&mut self,
buf: &[u8],
upto: usize,
) -> Result<bool, S::Error> {
let range = Range::new(self.last_line_visited, upto);
let mut stepper = LineStep::new(
self.config.line_term.as_byte(),
range.start(),
range.end(),
);
while let Some(line) = stepper.next_match(buf) {
if !self.sink_other_context(buf, &line)? {
return Ok(false);
}
}
Ok(true)
}
fn match_by_line_slow(&mut self, buf: &[u8]) -> Result<bool, S::Error> {
debug_assert!(!self.searcher.multi_line_with_matcher(&self.matcher));
let range = Range::new(self.pos(), buf.len());
let mut stepper = LineStep::new(
self.config.line_term.as_byte(),
range.start(),
range.end(),
);
while let Some(line) = stepper.next_match(buf) {
let matched = {
// Stripping the line terminator is necessary to prevent some
// classes of regexes from matching the empty position *after*
// the end of the line. For example, `(?m)^$` will match at
// position (2, 2) in the string `a\n`.
let slice = lines::without_terminator(
&buf[line],
self.config.line_term,
);
match self.matcher.shortest_match(slice) {
Err(err) => return Err(S::Error::error_message(err)),
Ok(result) => result.is_some(),
}
};
self.set_pos(line.end());
if matched != self.config.invert_match {
if !self.before_context_by_line(buf, line.start())? {
return Ok(false);
}
if !self.sink_matched(buf, &line)? {
return Ok(false);
}
} else if self.after_context_left >= 1 {
if !self.sink_after_context(buf, &line)? {
return Ok(false);
}
} else if self.config.passthru {
if !self.sink_other_context(buf, &line)? {
return Ok(false);
}
}
}
Ok(true)
}
fn match_by_line_fast(&mut self, buf: &[u8]) -> Result<bool, S::Error> {
debug_assert!(!self.config.passthru);
while !buf[self.pos()..].is_empty() {
if self.config.invert_match {
if !self.match_by_line_fast_invert(buf)? {
return Ok(false);
}
} else if let Some(line) = self.find_by_line_fast(buf)? {
if !self.after_context_by_line(buf, line.start())? {
return Ok(false);
}
if !self.before_context_by_line(buf, line.start())? {
return Ok(false);
}
self.set_pos(line.end());
if !self.sink_matched(buf, &line)? {
return Ok(false);
}
} else {
break;
}
}
if !self.after_context_by_line(buf, buf.len())? {
return Ok(false);
}
self.set_pos(buf.len());
Ok(true)
}
fn match_by_line_fast_invert(
&mut self,
buf: &[u8],
) -> Result<bool, S::Error> {
assert!(self.config.invert_match);
let invert_match = match self.find_by_line_fast(buf)? {
None => {
let range = Range::new(self.pos(), buf.len());
self.set_pos(range.end());
range
}
Some(line) => {
let range = Range::new(self.pos(), line.start());
self.set_pos(line.end());
range
}
};
if invert_match.is_empty() {
return Ok(true);
}
if !self.after_context_by_line(buf, invert_match.start())? {
return Ok(false);
}
if !self.before_context_by_line(buf, invert_match.start())? {
return Ok(false);
}
let mut stepper = LineStep::new(
self.config.line_term.as_byte(),
invert_match.start(),
invert_match.end(),
);
while let Some(line) = stepper.next_match(buf) {
if !self.sink_matched(buf, &line)? {
return Ok(false);
}
}
Ok(true)
}
fn find_by_line_fast(
&self,
buf: &[u8],
) -> Result<Option<Range>, S::Error> {
debug_assert!(!self.searcher.multi_line_with_matcher(&self.matcher));
debug_assert!(self.is_line_by_line_fast());
let mut pos = self.pos();
while !buf[pos..].is_empty() {
match self.matcher.find_candidate_line(&buf[pos..]) {
Err(err) => return Err(S::Error::error_message(err)),
Ok(None) => return Ok(None),
Ok(Some(LineMatchKind::Confirmed(i))) => {
let line = lines::locate(
buf,
self.config.line_term.as_byte(),
Range::zero(i).offset(pos),
);
// If we matched beyond the end of the buffer, then we
// don't report this as a match.
if line.start() == buf.len() {
pos = buf.len();
continue;
}
return Ok(Some(line));
}
Ok(Some(LineMatchKind::Candidate(i))) => {
let line = lines::locate(
buf,
self.config.line_term.as_byte(),
Range::zero(i).offset(pos),
);
// We need to strip the line terminator here to match the
// semantics of line-by-line searching. Namely, regexes
// like `(?m)^$` can match at the final position beyond a
// line terminator, which is non-sensical in line oriented
// matching.
let slice = lines::without_terminator(
&buf[line],
self.config.line_term,
);
match self.matcher.is_match(slice) {
Err(err) => return Err(S::Error::error_message(err)),
Ok(true) => return Ok(Some(line)),
Ok(false) => {
pos = line.end();
continue;
}
}
}
}
}
Ok(None)
}
fn sink_matched(
&mut self,
buf: &[u8],
range: &Range,
) -> Result<bool, S::Error> {
if self.binary && self.detect_binary(buf, range) {
return Ok(false);
}
if !self.sink_break_context(range.start())? {
return Ok(false);
}
self.count_lines(buf, range.start());
let offset = self.absolute_byte_offset + range.start() as u64;
let keepgoing = self.sink.matched(
&self.searcher,
&SinkMatch {
line_term: self.config.line_term,
bytes: &buf[*range],
absolute_byte_offset: offset,
line_number: self.line_number,
},
)?;
if !keepgoing {
return Ok(false);
}
self.last_line_visited = range.end();
self.after_context_left = self.config.after_context;
self.has_sunk = true;
Ok(true)
}
fn sink_before_context(
&mut self,
buf: &[u8],
range: &Range,
) -> Result<bool, S::Error> {
if self.binary && self.detect_binary(buf, range) {
return Ok(false);
}
self.count_lines(buf, range.start());
let offset = self.absolute_byte_offset + range.start() as u64;
let keepgoing = self.sink.context(
&self.searcher,
&SinkContext {
line_term: self.config.line_term,
bytes: &buf[*range],
kind: SinkContextKind::Before,
absolute_byte_offset: offset,
line_number: self.line_number,
},
)?;
if !keepgoing {
return Ok(false);
}
self.last_line_visited = range.end();
self.has_sunk = true;
Ok(true)
}
fn sink_after_context(
&mut self,
buf: &[u8],
range: &Range,
) -> Result<bool, S::Error> {
assert!(self.after_context_left >= 1);
if self.binary && self.detect_binary(buf, range) {
return Ok(false);
}
self.count_lines(buf, range.start());
let offset = self.absolute_byte_offset + range.start() as u64;
let keepgoing = self.sink.context(
&self.searcher,
&SinkContext {
line_term: self.config.line_term,
bytes: &buf[*range],
kind: SinkContextKind::After,
absolute_byte_offset: offset,
line_number: self.line_number,
},
)?;
if !keepgoing {
return Ok(false);
}
self.last_line_visited = range.end();
self.after_context_left -= 1;
self.has_sunk = true;
Ok(true)
}
fn sink_other_context(
&mut self,
buf: &[u8],
range: &Range,
) -> Result<bool, S::Error> {
if self.binary && self.detect_binary(buf, range) {
return Ok(false);
}
self.count_lines(buf, range.start());
let offset = self.absolute_byte_offset + range.start() as u64;
let keepgoing = self.sink.context(
&self.searcher,
&SinkContext {
line_term: self.config.line_term,
bytes: &buf[*range],
kind: SinkContextKind::Other,
absolute_byte_offset: offset,
line_number: self.line_number,
},
)?;
if !keepgoing {
return Ok(false);
}
self.last_line_visited = range.end();
self.has_sunk = true;
Ok(true)
}
fn sink_break_context(
&mut self,
start_of_line: usize,
) -> Result<bool, S::Error> {
let is_gap = self.last_line_visited < start_of_line;
let any_context =
self.config.before_context > 0
|| self.config.after_context > 0;
if !any_context || !self.has_sunk || !is_gap {
Ok(true)
} else {
self.sink.context_break(&self.searcher)
}
}
fn count_lines(&mut self, buf: &[u8], upto: usize) {
if let Some(ref mut line_number) = self.line_number {
if self.last_line_counted >= upto {
return;
}
let slice = &buf[self.last_line_counted..upto];
let count = lines::count(slice, self.config.line_term.as_byte());
*line_number += count;
self.last_line_counted = upto;
}
}
fn is_line_by_line_fast(&self) -> bool {
debug_assert!(!self.searcher.multi_line_with_matcher(&self.matcher));
if self.config.passthru {
return false;
}
if let Some(line_term) = self.matcher.line_terminator() {
if line_term == self.config.line_term {
return true;
}
}
if let Some(non_matching) = self.matcher.non_matching_bytes() {
// If the line terminator is CRLF, we don't actually need to care
// whether the regex can match `\r` or not. Namely, a `\r` is
// neither necessary nor sufficient to terminate a line. A `\n` is
// always required.
if non_matching.contains(self.config.line_term.as_byte()) {
return true;
}
}
false
}
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,106 @@
use std::fs::File;
use std::path::Path;
use memmap::Mmap;
/// Controls the strategy used for determining when to use memory maps.
///
/// If a searcher is called in circumstances where it is possible to use memory
/// maps, and memory maps are enabled, then it will attempt to do so if it
/// believes it will make the search faster.
///
/// By default, memory maps are disabled.
#[derive(Clone, Debug)]
pub struct MmapChoice(MmapChoiceImpl);
#[derive(Clone, Debug)]
enum MmapChoiceImpl {
Auto,
Never,
}
impl Default for MmapChoice {
fn default() -> MmapChoice {
MmapChoice(MmapChoiceImpl::Never)
}
}
impl MmapChoice {
/// Use memory maps when they are believed to be advantageous.
///
/// The heuristics used to determine whether to use a memory map or not
/// may depend on many things, including but not limited to, file size
/// and platform.
///
/// If memory maps are unavailable or cannot be used for a specific input,
/// then normal OS read calls are used instead.
///
/// # Safety
///
/// This constructor is not safe because there is no obvious way to
/// encapsulate the safety of file backed memory maps on all platforms
/// without simultaneously negating some or all of their benefits.
///
/// The specific contract the caller is required to uphold isn't precise,
/// but it basically amounts to something like, "the caller guarantees that
/// the underlying file won't be mutated." This, of course, isn't feasible
/// in many environments. However, command line tools may still decide to
/// take the risk of, say, a `SIGBUS` occurring while attempting to read a
/// memory map.
pub unsafe fn auto() -> MmapChoice {
MmapChoice(MmapChoiceImpl::Auto)
}
/// Never use memory maps, no matter what. This is the default.
pub fn never() -> MmapChoice {
MmapChoice(MmapChoiceImpl::Never)
}
/// Return a memory map if memory maps are enabled and if creating a
/// memory from the given file succeeded and if memory maps are believed
/// to be advantageous for performance.
///
/// If this does attempt to open a memory map and it fails, then `None`
/// is returned and the corresponding error (along with the file path, if
/// present) is logged at the debug level.
pub(crate) fn open(
&self,
file: &File,
path: Option<&Path>,
) -> Option<Mmap> {
if !self.is_enabled() {
return None;
}
if cfg!(target_os = "macos") {
// I guess memory maps on macOS aren't great. Should re-evaluate.
return None;
}
// SAFETY: This is acceptable because the only way `MmapChoiceImpl` can
// be `Auto` is if the caller invoked the `auto` constructor. Thus,
// this is a propagation of the caller's assertion that using memory
// maps is safe.
match unsafe { Mmap::map(file) } {
Ok(mmap) => Some(mmap),
Err(err) => {
if let Some(path) = path {
debug!(
"{}: failed to open memory map: {}",
path.display(),
err
);
} else {
debug!("failed to open memory map: {}", err);
}
None
}
}
}
/// Whether this strategy may employ memory maps or not.
pub(crate) fn is_enabled(&self) -> bool {
match self.0 {
MmapChoiceImpl::Auto => true,
MmapChoiceImpl::Never => false,
}
}
}

View File

@ -0,0 +1,934 @@
use std::cell::RefCell;
use std::cmp;
use std::fmt;
use std::fs::File;
use std::io::{self, Read};
use std::path::Path;
use encoding_rs;
use encoding_rs_io::DecodeReaderBytesBuilder;
use grep_matcher::{LineTerminator, Match, Matcher};
use line_buffer::{
self, BufferAllocation, LineBuffer, LineBufferBuilder, LineBufferReader,
DEFAULT_BUFFER_CAPACITY, alloc_error,
};
use searcher::glue::{ReadByLine, SliceByLine, MultiLine};
use sink::{Sink, SinkError};
pub use self::mmap::MmapChoice;
mod core;
mod glue;
mod mmap;
/// We use this type alias since we want the ergonomics of a matcher's `Match`
/// type, but in practice, we use it for arbitrary ranges, so give it a more
/// accurate name. This is only used in the searcher's internals.
type Range = Match;
/// The behavior of binary detection while searching.
///
/// Binary detection is the process of _heuristically_ identifying whether a
/// given chunk of data is binary or not, and then taking an action based on
/// the result of that heuristic. The motivation behind detecting binary data
/// is that binary data often indicates data that is undesirable to search
/// using textual patterns. Of course, there are many cases in which this isn't
/// true, which is why binary detection is disabled by default.
///
/// Unfortunately, binary detection works differently depending on the type of
/// search being executed:
///
/// 1. When performing a search using a fixed size buffer, binary detection is
/// applied to the buffer's contents as it is filled. Binary detection must
/// be applied to the buffer directly because binary files may not contain
/// line terminators, which could result in exorbitant memory usage.
/// 2. When performing a search using memory maps or by reading data off the
/// heap, then binary detection is only guaranteed to be applied to the
/// parts corresponding to a match. When `Quit` is enabled, then the first
/// few KB of the data are searched for binary data.
#[derive(Clone, Debug, Default)]
pub struct BinaryDetection(line_buffer::BinaryDetection);
impl BinaryDetection {
/// No binary detection is performed. Data reported by the searcher may
/// contain arbitrary bytes.
///
/// This is the default.
pub fn none() -> BinaryDetection {
BinaryDetection(line_buffer::BinaryDetection::None)
}
/// Binary detection is performed by looking for the given byte.
///
/// When searching is performed using a fixed size buffer, then the
/// contents of that buffer are always searched for the presence of this
/// byte. If it is found, then the underlying data is considered binary
/// and the search stops as if it reached EOF.
///
/// When searching is performed with the entire contents mapped into
/// memory, then binary detection is more conservative. Namely, only a
/// fixed sized region at the beginning of the contents are detected for
/// binary data. As a compromise, any subsequent matching (or context)
/// lines are also searched for binary data. If binary data is detected at
/// any point, then the search stops as if it reached EOF.
pub fn quit(binary_byte: u8) -> BinaryDetection {
BinaryDetection(line_buffer::BinaryDetection::Quit(binary_byte))
}
// TODO(burntsushi): Figure out how to make binary conversion work. This
// permits implementing GNU grep's default behavior, which is to zap NUL
// bytes but still execute a search (if a match is detected, then GNU grep
// stops and reports that a match was found but doesn't print the matching
// line itself).
//
// This behavior is pretty simple to implement using the line buffer (and
// in fact, it is already implemented and tested), since there's a fixed
// size buffer that we can easily write to. The issue arises when searching
// a `&[u8]` (whether on the heap or via a memory map), since this isn't
// something we can easily write to.
/// The given byte is searched in all contents read by the line buffer. If
/// it occurs, then it is replaced by the line terminator. The line buffer
/// guarantees that this byte will never be observable by callers.
#[allow(dead_code)]
fn convert(binary_byte: u8) -> BinaryDetection {
BinaryDetection(line_buffer::BinaryDetection::Convert(binary_byte))
}
}
/// An encoding to use when searching.
///
/// An encoding can be used to configure a
/// [`SearcherBuilder`](struct.SearchBuilder.html)
/// to transcode source data from an encoding to UTF-8 before searching.
///
/// An `Encoding` will always be cheap to clone.
#[derive(Clone, Debug)]
pub struct Encoding(&'static encoding_rs::Encoding);
impl Encoding {
/// Create a new encoding for the specified label.
///
/// The encoding label provided is mapped to an encoding via the set of
/// available choices specified in the
/// [Encoding Standard](https://encoding.spec.whatwg.org/#concept-encoding-get).
/// If the given label does not correspond to a valid encoding, then this
/// returns an error.
pub fn new(label: &str) -> Result<Encoding, ConfigError> {
let label = label.as_bytes();
match encoding_rs::Encoding::for_label_no_replacement(label) {
Some(encoding) => Ok(Encoding(encoding)),
None => {
Err(ConfigError::UnknownEncoding { label: label.to_vec() })
}
}
}
}
/// The internal configuration of a searcher. This is shared among several
/// search related types, but is only ever written to by the SearcherBuilder.
#[derive(Clone, Debug)]
pub struct Config {
/// The line terminator to use.
line_term: LineTerminator,
/// Whether to invert matching.
invert_match: bool,
/// The number of lines after a match to include.
after_context: usize,
/// The number of lines before a match to include.
before_context: usize,
/// Whether to enable unbounded context or not.
passthru: bool,
/// Whether to count line numbers.
line_number: bool,
/// The maximum amount of heap memory to use.
///
/// When not given, no explicit limit is enforced. When set to `0`, then
/// only the memory map search strategy is available.
heap_limit: Option<usize>,
/// The memory map strategy.
mmap: MmapChoice,
/// The binary data detection strategy.
binary: BinaryDetection,
/// Whether to enable matching across multiple lines.
multi_line: bool,
/// An encoding that, when present, causes the searcher to transcode all
/// input from the encoding to UTF-8.
encoding: Option<Encoding>,
}
impl Default for Config {
fn default() -> Config {
Config {
line_term: LineTerminator::default(),
invert_match: false,
after_context: 0,
before_context: 0,
passthru: false,
line_number: true,
heap_limit: None,
mmap: MmapChoice::default(),
binary: BinaryDetection::default(),
multi_line: false,
encoding: None,
}
}
}
impl Config {
/// Return the maximal amount of lines needed to fulfill this
/// configuration's context.
///
/// If this returns `0`, then no context is ever needed.
fn max_context(&self) -> usize {
cmp::max(self.before_context, self.after_context)
}
/// Build a line buffer from this configuration.
fn line_buffer(&self) -> LineBuffer {
let mut builder = LineBufferBuilder::new();
builder
.line_terminator(self.line_term.as_byte())
.binary_detection(self.binary.0);
if let Some(limit) = self.heap_limit {
let (capacity, additional) =
if limit <= DEFAULT_BUFFER_CAPACITY {
(limit, 0)
} else {
(DEFAULT_BUFFER_CAPACITY, limit - DEFAULT_BUFFER_CAPACITY)
};
builder
.capacity(capacity)
.buffer_alloc(BufferAllocation::Error(additional));
}
builder.build()
}
}
/// An error that can occur when building a searcher.
///
/// This error occurs when a non-sensical configuration is present when trying
/// to construct a `Searcher` from a `SearcherBuilder`.
#[derive(Clone, Debug, Eq, PartialEq)]
pub enum ConfigError {
/// Indicates that the heap limit configuration prevents all possible
/// search strategies from being used. For example, if the heap limit is
/// set to 0 and memory map searching is disabled or unavailable.
SearchUnavailable,
/// Occurs when a matcher reports a line terminator that is different than
/// the one configured in the searcher.
MismatchedLineTerminators {
/// The matcher's line terminator.
matcher: LineTerminator,
/// The searcher's line terminator.
searcher: LineTerminator,
},
/// Occurs when no encoding could be found for a particular label.
UnknownEncoding {
/// The provided encoding label that could not be found.
label: Vec<u8>,
},
/// Hints that destructuring should not be exhaustive.
///
/// This enum may grow additional variants, so this makes sure clients
/// don't count on exhaustive matching. (Otherwise, adding a new variant
/// could break existing code.)
#[doc(hidden)]
__Nonexhaustive,
}
impl ::std::error::Error for ConfigError {
fn description(&self) -> &str { "grep-searcher configuration error" }
}
impl fmt::Display for ConfigError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
ConfigError::SearchUnavailable => {
write!(f, "grep config error: no available searchers")
}
ConfigError::MismatchedLineTerminators { matcher, searcher } => {
write!(
f,
"grep config error: mismatched line terminators, \
matcher has {:?} but searcher has {:?}",
matcher,
searcher
)
}
ConfigError::UnknownEncoding { ref label } => {
write!(
f,
"grep config error: unknown encoding: {}",
String::from_utf8_lossy(label),
)
}
_ => panic!("BUG: unexpected variant found"),
}
}
}
/// A builder for configuring a searcher.
///
/// A search builder permits specifying the configuration of a searcher,
/// including options like whether to invert the search or to enable multi
/// line search.
///
/// Once a searcher has been built, it is beneficial to reuse that searcher
/// for multiple searches, if possible.
#[derive(Clone, Debug)]
pub struct SearcherBuilder {
config: Config,
}
impl Default for SearcherBuilder {
fn default() -> SearcherBuilder {
SearcherBuilder::new()
}
}
impl SearcherBuilder {
/// Create a new searcher builder with a default configuration.
pub fn new() -> SearcherBuilder {
SearcherBuilder {
config: Config::default(),
}
}
/// Builder a searcher with the given matcher.
pub fn build(&self) -> Searcher {
let mut config = self.config.clone();
if config.passthru {
config.before_context = 0;
config.after_context = 0;
}
let mut decode_builder = DecodeReaderBytesBuilder::new();
decode_builder
.encoding(self.config.encoding.as_ref().map(|e| e.0))
.utf8_passthru(true);
Searcher {
config: config,
decode_builder: decode_builder,
decode_buffer: RefCell::new(vec![0; 8 * (1<<10)]),
line_buffer: RefCell::new(self.config.line_buffer()),
multi_line_buffer: RefCell::new(vec![]),
}
}
/// Set the line terminator that is used by the searcher.
///
/// When building a searcher, if the matcher provided has a line terminator
/// set, then it must be the same as this one. If they aren't, building
/// a searcher will return an error.
///
/// By default, this is set to `b'\n'`.
pub fn line_terminator(
&mut self,
line_term: LineTerminator,
) -> &mut SearcherBuilder {
self.config.line_term = line_term;
self
}
/// Whether to invert matching, whereby lines that don't match are reported
/// instead of reporting lines that do match.
///
/// By default, this is disabled.
pub fn invert_match(&mut self, yes: bool) -> &mut SearcherBuilder {
self.config.invert_match = yes;
self
}
/// Whether to count and include line numbers with matching lines.
///
/// This is enabled by default. There is a small performance penalty
/// associated with computing line numbers, so this can be disabled when
/// this isn't desirable.
pub fn line_number(&mut self, yes: bool) -> &mut SearcherBuilder {
self.config.line_number = yes;
self
}
/// Whether to enable multi line search or not.
///
/// When multi line search is enabled, matches *may* match across multiple
/// lines. Conversely, when multi line search is disabled, it is impossible
/// for any match to span more than one line.
///
/// **Warning:** multi line search requires having the entire contents to
/// search mapped in memory at once. When searching files, memory maps
/// will be used if possible and if they are enabled, which avoids using
/// your program's heap. However, if memory maps cannot be used (e.g.,
/// for searching streams like `stdin` or if transcoding is necessary),
/// then the entire contents of the stream are read on to the heap before
/// starting the search.
///
/// This is disabled by default.
pub fn multi_line(&mut self, yes: bool) -> &mut SearcherBuilder {
self.config.multi_line = yes;
self
}
/// Whether to include a fixed number of lines after every match.
///
/// When this is set to a non-zero number, then the searcher will report
/// `line_count` contextual lines after every match.
///
/// This is set to `0` by default.
pub fn after_context(
&mut self,
line_count: usize,
) -> &mut SearcherBuilder {
self.config.after_context = line_count;
self
}
/// Whether to include a fixed number of lines before every match.
///
/// When this is set to a non-zero number, then the searcher will report
/// `line_count` contextual lines before every match.
///
/// This is set to `0` by default.
pub fn before_context(
&mut self,
line_count: usize,
) -> &mut SearcherBuilder {
self.config.before_context = line_count;
self
}
/// Whether to enable the "passthru" feature or not.
///
/// When passthru is enabled, it effectively treats all non-matching lines
/// as contextual lines. In other words, enabling this is akin to
/// requesting an unbounded number of before and after contextual lines.
///
/// When passthru mode is enabled, any `before_context` or `after_context`
/// settings are ignored by setting them to `0`.
///
/// This is disabled by default.
pub fn passthru(&mut self, yes: bool) -> &mut SearcherBuilder {
self.config.passthru = yes;
self
}
/// Set an approximate limit on the amount of heap space used by a
/// searcher.
///
/// The heap limit is enforced in two scenarios:
///
/// * When searching using a fixed size buffer, the heap limit controls
/// how big this buffer is allowed to be. Assuming contexts are disabled,
/// the minimum size of this buffer is the length (in bytes) of the
/// largest single line in the contents being searched. If any line
/// exceeds the heap limit, then an error will be returned.
/// * When performing a multi line search, a fixed size buffer cannot be
/// used. Thus, the only choices are to read the entire contents on to
/// the heap, or use memory maps. In the former case, the heap limit set
/// here is enforced.
///
/// If a heap limit is set to `0`, then no heap space is used. If there are
/// no alternative strategies available for searching without heap space
/// (e.g., memory maps are disabled), then the searcher wil return an error
/// immediately.
///
/// By default, no limit is set.
pub fn heap_limit(
&mut self,
bytes: Option<usize>,
) -> &mut SearcherBuilder {
self.config.heap_limit = bytes;
self
}
/// Set the strategy to employ use of memory maps.
///
/// Currently, there are only two strategies that can be employed:
///
/// * **Automatic** - A searcher will use heuristics, including but not
/// limited to file size and platform, to determine whether to use memory
/// maps or not.
/// * **Never** - Memory maps will never be used. If multi line search is
/// enabled, then the entire contents will be read on to the heap before
/// searching begins.
///
/// The default behavior is **never**. Generally speaking, command line
/// programs probably want to enable memory maps. The only reason to keep
/// memory maps disabled is if there are concerns using them. For example,
/// if your process is searching a file backed memory map at the same time
/// that file is truncated, then it's possible for the process to terminate
/// with a bus error.
pub fn memory_map(
&mut self,
strategy: MmapChoice,
) -> &mut SearcherBuilder {
self.config.mmap = strategy;
self
}
/// Set the binary detection strategy.
///
/// The binary detection strategy determines not only how the searcher
/// detects binary data, but how it responds to the presence of binary
/// data. See the [`BinaryDetection`](struct.BinaryDetection.html) type
/// for more information.
///
/// By default, binary detection is disabled.
pub fn binary_detection(
&mut self,
detection: BinaryDetection,
) -> &mut SearcherBuilder {
self.config.binary = detection;
self
}
/// Set the encoding used to read the source data before searching.
///
/// When an encoding is provided, then the source data is _unconditionally_
/// transcoded using the encoding. This will disable BOM sniffing. If the
/// transcoding process encounters an error, then bytes are replaced with
/// the Unicode replacement codepoint.
///
/// When no encoding is specified (the default), then BOM sniffing is used
/// to determine whether the source data is UTF-8 or UTF-16, and
/// transcoding will be performed automatically. If no BOM could be found,
/// then the source data is searched _as if_ it were UTF-8. However, so
/// long as the source data is at least ASCII compatible, then it is
/// possible for a search to produce useful results.
pub fn encoding(
&mut self,
encoding: Option<Encoding>,
) -> &mut SearcherBuilder {
self.config.encoding = encoding;
self
}
}
/// A searcher executes searches over a haystack and writes results to a caller
/// provided sink.
///
/// Matches are detected via implementations of the `Matcher` trait, which must
/// be provided by the caller when executing a search.
///
/// When possible, a searcher should be reused.
#[derive(Clone, Debug)]
pub struct Searcher {
/// The configuration for this searcher.
///
/// We make most of these settings available to users of `Searcher` via
/// public API methods, which can be queried in implementations of `Sink`
/// if necessary.
config: Config,
/// A builder for constructing a streaming reader that transcodes source
/// data according to either an explicitly specified encoding or via an
/// automatically detected encoding via BOM sniffing.
///
/// When no transcoding is needed, then the transcoder built will pass
/// through the underlying bytes with no additional overhead.
decode_builder: DecodeReaderBytesBuilder,
/// A buffer that is used for transcoding scratch space.
decode_buffer: RefCell<Vec<u8>>,
/// A line buffer for use in line oriented searching.
///
/// We wrap it in a RefCell to permit lending out borrows of `Searcher`
/// to sinks. We still require a mutable borrow to execute a search, so
/// we statically prevent callers from causing RefCell to panic at runtime
/// due to a borrowing violation.
line_buffer: RefCell<LineBuffer>,
/// A buffer in which to store the contents of a reader when performing a
/// multi line search. In particular, multi line searches cannot be
/// performed incrementally, and need the entire haystack in memory at
/// once.
multi_line_buffer: RefCell<Vec<u8>>,
}
impl Searcher {
/// Create a new searcher with a default configuration.
///
/// To configure the searcher (e.g., invert matching, enable memory maps,
/// enable contexts, etc.), use the
/// [`SearcherBuilder`](struct.SearcherBuilder.html).
pub fn new() -> Searcher {
SearcherBuilder::new().build()
}
/// Execute a search over the file with the given path and write the
/// results to the given sink.
///
/// If memory maps are enabled and the searcher heuristically believes
/// memory maps will help the search run faster, then this will use
/// memory maps. For this reason, callers should prefer using this method
/// or `search_file` over the more generic `search_reader` when possible.
pub fn search_path<P, M, S>(
&mut self,
matcher: M,
path: P,
write_to: S,
) -> Result<(), S::Error>
where P: AsRef<Path>,
M: Matcher,
S: Sink,
{
let path = path.as_ref();
let file = File::open(path).map_err(S::Error::error_io)?;
self.search_file_maybe_path(matcher, Some(path), &file, write_to)
}
/// Execute a search over a file and write the results to the given sink.
///
/// If memory maps are enabled and the searcher heuristically believes
/// memory maps will help the search run faster, then this will use
/// memory maps. For this reason, callers should prefer using this method
/// or `search_path` over the more generic `search_reader` when possible.
pub fn search_file<M, S>(
&mut self,
matcher: M,
file: &File,
write_to: S,
) -> Result<(), S::Error>
where M: Matcher,
S: Sink,
{
self.search_file_maybe_path(matcher, None, file, write_to)
}
fn search_file_maybe_path<M, S>(
&mut self,
matcher: M,
path: Option<&Path>,
file: &File,
write_to: S,
) -> Result<(), S::Error>
where M: Matcher,
S: Sink,
{
if let Some(mmap) = self.config.mmap.open(file, path) {
trace!("{:?}: searching via memory map", path);
return self.search_slice(matcher, &mmap, write_to);
}
// Fast path for multi-line searches of files when memory maps are
// not enabled. This pre-allocates a buffer roughly the size of the
// file, which isn't possible when searching an arbitrary io::Read.
if self.multi_line_with_matcher(&matcher) {
trace!("{:?}: reading entire file on to heap for mulitline", path);
self.fill_multi_line_buffer_from_file::<S>(file)?;
trace!("{:?}: searching via multiline strategy", path);
MultiLine::new(
self,
matcher,
&*self.multi_line_buffer.borrow(),
write_to,
).run()
} else {
trace!("{:?}: searching using generic reader", path);
self.search_reader(matcher, file, write_to)
}
}
/// Execute a search over any implementation of `io::Read` and write the
/// results to the given sink.
///
/// When possible, this implementation will search the reader incrementally
/// without reading it into memory. In some cases---for example, if multi
/// line search is enabled---an incremental search isn't possible and the
/// given reader is consumed completely and placed on the heap before
/// searching begins. For this reason, when multi line search is enabled,
/// one should try to use higher level APIs (e.g., searching by file or
/// file path) so that memory maps can be used if they are available and
/// enabled.
pub fn search_reader<M, R, S>(
&mut self,
matcher: M,
read_from: R,
write_to: S,
) -> Result<(), S::Error>
where M: Matcher,
R: io::Read,
S: Sink,
{
self.check_config(&matcher).map_err(S::Error::error_config)?;
let mut decode_buffer = self.decode_buffer.borrow_mut();
let read_from = self.decode_builder
.build_with_buffer(read_from, &mut *decode_buffer)
.map_err(S::Error::error_io)?;
if self.multi_line_with_matcher(&matcher) {
trace!("generic reader: reading everything to heap for multiline");
self.fill_multi_line_buffer_from_reader::<_, S>(read_from)?;
trace!("generic reader: searching via multiline strategy");
MultiLine::new(
self,
matcher,
&*self.multi_line_buffer.borrow(),
write_to,
).run()
} else {
let mut line_buffer = self.line_buffer.borrow_mut();
let rdr = LineBufferReader::new(read_from, &mut *line_buffer);
trace!("generic reader: searching via roll buffer strategy");
ReadByLine::new(self, matcher, rdr, write_to).run()
}
}
/// Execute a search over the given slice and write the results to the
/// given sink.
pub fn search_slice<M, S>(
&mut self,
matcher: M,
slice: &[u8],
write_to: S,
) -> Result<(), S::Error>
where M: Matcher,
S: Sink,
{
self.check_config(&matcher).map_err(S::Error::error_config)?;
// We can search the slice directly, unless we need to do transcoding.
if self.slice_needs_transcoding(slice) {
trace!("slice reader: needs transcoding, using generic reader");
return self.search_reader(matcher, slice, write_to);
}
if self.multi_line_with_matcher(&matcher) {
trace!("slice reader: searching via multiline strategy");
MultiLine::new(self, matcher, slice, write_to).run()
} else {
trace!("slice reader: searching via slice-by-line strategy");
SliceByLine::new(self, matcher, slice, write_to).run()
}
}
/// Check that the searcher's configuration and the matcher are consistent
/// with each other.
fn check_config<M: Matcher>(&self, matcher: M) -> Result<(), ConfigError> {
if self.config.heap_limit == Some(0)
&& !self.config.mmap.is_enabled()
{
return Err(ConfigError::SearchUnavailable);
}
let matcher_line_term = match matcher.line_terminator() {
None => return Ok(()),
Some(line_term) => line_term,
};
if matcher_line_term != self.config.line_term {
return Err(ConfigError::MismatchedLineTerminators {
matcher: matcher_line_term,
searcher: self.config.line_term,
});
}
Ok(())
}
/// Returns true if and only if the given slice needs to be transcoded.
fn slice_needs_transcoding(&self, slice: &[u8]) -> bool {
self.config.encoding.is_some() || slice_has_utf16_bom(slice)
}
}
/// The following methods permit querying the configuration of a searcher.
/// These can be useful in generic implementations of
/// [`Sink`](trait.Sink.html),
/// where the output may be tailored based on how the searcher is configured.
impl Searcher {
/// Returns the line terminator used by this searcher.
pub fn line_terminator(&self) -> LineTerminator {
self.config.line_term
}
/// Returns true if and only if this searcher is configured to invert its
/// search results. That is, matching lines are lines that do **not** match
/// the searcher's matcher.
pub fn invert_match(&self) -> bool {
self.config.invert_match
}
/// Returns true if and only if this searcher is configured to count line
/// numbers.
pub fn line_number(&self) -> bool {
self.config.line_number
}
/// Returns true if and only if this searcher is configured to perform
/// multi line search.
pub fn multi_line(&self) -> bool {
self.config.multi_line
}
/// Returns true if and only if this searcher will choose a multi-line
/// strategy given the provided matcher.
///
/// This may diverge from the result of `multi_line` in cases where the
/// searcher has been configured to execute a search that can report
/// matches over multiple lines, but where the matcher guarantees that it
/// will never produce a match over multiple lines.
pub fn multi_line_with_matcher<M: Matcher>(&self, matcher: M) -> bool {
if !self.multi_line() {
return false;
}
if let Some(line_term) = matcher.line_terminator() {
if line_term == self.line_terminator() {
return false;
}
}
if let Some(non_matching) = matcher.non_matching_bytes() {
// If the line terminator is CRLF, we don't actually need to care
// whether the regex can match `\r` or not. Namely, a `\r` is
// neither necessary nor sufficient to terminate a line. A `\n` is
// always required.
if non_matching.contains(self.line_terminator().as_byte()) {
return false;
}
}
true
}
/// Returns the number of "after" context lines to report. When context
/// reporting is not enabled, this returns `0`.
pub fn after_context(&self) -> usize {
self.config.after_context
}
/// Returns the number of "before" context lines to report. When context
/// reporting is not enabled, this returns `0`.
pub fn before_context(&self) -> usize {
self.config.before_context
}
/// Returns true if and only if the searcher has "passthru" mode enabled.
pub fn passthru(&self) -> bool {
self.config.passthru
}
/// Fill the buffer for use with multi-line searching from the given file.
/// This reads from the file until EOF or until an error occurs. If the
/// contents exceed the configured heap limit, then an error is returned.
fn fill_multi_line_buffer_from_file<S: Sink>(
&self,
file: &File,
) -> Result<(), S::Error> {
assert!(self.config.multi_line);
let mut decode_buffer = self.decode_buffer.borrow_mut();
let mut read_from = self.decode_builder
.build_with_buffer(file, &mut *decode_buffer)
.map_err(S::Error::error_io)?;
// If we don't have a heap limit, then we can defer to std's
// read_to_end implementation. fill_multi_line_buffer_from_reader will
// do this too, but since we have a File, we can be a bit smarter about
// pre-allocating here.
//
// If we're transcoding, then our pre-allocation might not be exact,
// but is probably still better than nothing.
if self.config.heap_limit.is_none() {
let mut buf = self.multi_line_buffer.borrow_mut();
buf.clear();
let cap = file
.metadata()
.map(|m| m.len() as usize + 1)
.unwrap_or(0);
buf.reserve(cap);
read_from.read_to_end(&mut *buf).map_err(S::Error::error_io)?;
return Ok(());
}
self.fill_multi_line_buffer_from_reader::<_, S>(read_from)
}
/// Fill the buffer for use with multi-line searching from the given
/// reader. This reads from the reader until EOF or until an error occurs.
/// If the contents exceed the configured heap limit, then an error is
/// returned.
fn fill_multi_line_buffer_from_reader<R: io::Read, S: Sink>(
&self,
mut read_from: R,
) -> Result<(), S::Error> {
assert!(self.config.multi_line);
let mut buf = self.multi_line_buffer.borrow_mut();
buf.clear();
// If we don't have a heap limit, then we can defer to std's
// read_to_end implementation...
let heap_limit = match self.config.heap_limit {
Some(heap_limit) => heap_limit,
None => {
read_from.read_to_end(&mut *buf).map_err(S::Error::error_io)?;
return Ok(());
}
};
if heap_limit == 0 {
return Err(S::Error::error_io(alloc_error(heap_limit)));
}
// ... otherwise we need to roll our own. This is likely quite a bit
// slower than what is optimal, but we avoid worry about memory safety
// until there's a compelling reason to speed this up.
buf.resize(cmp::min(DEFAULT_BUFFER_CAPACITY, heap_limit), 0);
let mut pos = 0;
loop {
let nread = match read_from.read(&mut buf[pos..]) {
Ok(nread) => nread,
Err(ref err) if err.kind() == io::ErrorKind::Interrupted => {
continue;
}
Err(err) => return Err(S::Error::error_io(err)),
};
if nread == 0 {
buf.resize(pos, 0);
return Ok(());
}
pos += nread;
if buf[pos..].is_empty() {
let additional = heap_limit - buf.len();
if additional == 0 {
return Err(S::Error::error_io(alloc_error(heap_limit)));
}
let limit = buf.len() + additional;
let doubled = 2 * buf.len();
buf.resize(cmp::min(doubled, limit), 0);
}
}
}
}
/// Returns true if and only if the given slice begins with a UTF-16 BOM.
///
/// This is used by the searcher to determine if a transcoder is necessary.
/// Otherwise, it is advantageous to search the slice directly.
fn slice_has_utf16_bom(slice: &[u8]) -> bool {
let enc = match encoding_rs::Encoding::for_bom(slice) {
None => return false,
Some((enc, _)) => enc,
};
[encoding_rs::UTF_16LE, encoding_rs::UTF_16BE].contains(&enc)
}
#[cfg(test)]
mod tests {
use testutil::{KitchenSink, RegexMatcher};
use super::*;
#[test]
fn config_error_heap_limit() {
let matcher = RegexMatcher::new("");
let sink = KitchenSink::new();
let mut searcher = SearcherBuilder::new()
.heap_limit(Some(0))
.build();
let res = searcher.search_slice(matcher, &[], sink);
assert!(res.is_err());
}
#[test]
fn config_error_line_terminator() {
let mut matcher = RegexMatcher::new("");
matcher.set_line_term(Some(LineTerminator::byte(b'z')));
let sink = KitchenSink::new();
let mut searcher = Searcher::new();
let res = searcher.search_slice(matcher, &[], sink);
assert!(res.is_err());
}
}

559
grep-searcher/src/sink.rs Normal file
View File

@ -0,0 +1,559 @@
use std::fmt;
use std::io;
use grep_matcher::LineTerminator;
use lines::LineIter;
use searcher::{ConfigError, Searcher};
/// A trait that describes errors that can be reported by searchers and
/// implementations of `Sink`.
///
/// Unless you have a specialized use case, you probably don't need to
/// implement this trait explicitly. It's likely that using `io::Error` (which
/// implements this trait) for your error type is good enough, largely because
/// most errors that occur during search will likely be an `io::Error`.
pub trait SinkError: Sized {
/// A constructor for converting any value that satisfies the
/// `fmt::Display` trait into an error.
fn error_message<T: fmt::Display>(message: T) -> Self;
/// A constructor for converting I/O errors that occur while searching into
/// an error of this type.
///
/// By default, this is implemented via the `error_message` constructor.
fn error_io(err: io::Error) -> Self {
Self::error_message(err)
}
/// A constructor for converting configuration errors that occur while
/// building a searcher into an error of this type.
///
/// By default, this is implemented via the `error_message` constructor.
fn error_config(err: ConfigError) -> Self {
Self::error_message(err)
}
}
/// An `io::Error` can be used as an error for `Sink` implementations out of
/// the box.
impl SinkError for io::Error {
fn error_message<T: fmt::Display>(message: T) -> io::Error {
io::Error::new(io::ErrorKind::Other, message.to_string())
}
fn error_io(err: io::Error) -> io::Error {
err
}
}
/// A `Box<std::error::Error>` can be used as an error for `Sink`
/// implementations out of the box.
impl SinkError for Box<::std::error::Error> {
fn error_message<T: fmt::Display>(message: T) -> Box<::std::error::Error> {
Box::<::std::error::Error>::from(message.to_string())
}
}
/// A trait that defines how results from searchers are handled.
///
/// In this crate, a searcher follows the "push" model. What that means is that
/// the searcher drives execution, and pushes results back to the caller. This
/// is in contrast to a "pull" model where the caller drives execution and
/// takes results as they need them. These are also known as "internal" and
/// "external" iteration strategies, respectively.
///
/// For a variety of reasons, including the complexity of the searcher
/// implementation, this crate chooses the "push" or "internal" model of
/// execution. Thus, in order to act on search results, callers must provide
/// an implementation of this trait to a searcher, and the searcher is then
/// responsible for calling the methods on this trait.
///
/// This trait defines five behaviors:
///
/// * What to do when a match is found. Callers must provide this.
/// * What to do when an error occurs. Callers must provide this via the
/// [`SinkError`](trait.SinkError.html) trait. Generally, callers can just
/// use `io::Error` for this, which already implements `SinkError`.
/// * What to do when a contextual line is found. By default, these are
/// ignored.
/// * What to do when a gap between contextual lines has been found. By
/// default, this is ignored.
/// * What to do when a search has started. By default, this does nothing.
/// * What to do when a search has finished successfully. By default, this does
/// nothing.
///
/// Callers must, at minimum, specify the behavior when an error occurs and
/// the behavior when a match occurs. The rest is optional. For each behavior,
/// callers may report an error (say, if writing the result to another
/// location failed) or simply return `false` if they want the search to stop
/// (e.g., when implementing a cap on the number of search results to show).
///
/// When errors are reported (whether in the searcher or in the implementation
/// of `Sink`), then searchers quit immediately without calling `finish`.
///
/// For simpler uses of `Sink`, callers may elect to use one of
/// the more convenient but less flexible implementations in the
/// [`sinks`](sinks/index.html) module.
pub trait Sink {
/// The type of an error that should be reported by a searcher.
///
/// Errors of this type are not only returned by the methods on this
/// trait, but the constructors defined in `SinkError` are also used in
/// the searcher implementation itself. e.g., When a I/O error occurs when
/// reading data from a file.
type Error: SinkError;
/// This method is called whenever a match is found.
///
/// If multi line is enabled on the searcher, then the match reported here
/// may span multiple lines and it may include multiple matches. When multi
/// line is disabled, then the match is guaranteed to span exactly one
/// non-empty line (where a single line is, at minimum, a line terminator).
///
/// If this returns `true`, then searching continues. If this returns
/// `false`, then searching is stopped immediately and `finish` is called.
///
/// If this returns an error, then searching is stopped immediately,
/// `finish` is not called and the error is bubbled back up to the caller
/// of the searcher.
fn matched(
&mut self,
_searcher: &Searcher,
_mat: &SinkMatch,
) -> Result<bool, Self::Error>;
/// This method is called whenever a context line is found, and is optional
/// to implement. By default, it does nothing and returns `true`.
///
/// In all cases, the context given is guaranteed to span exactly one
/// non-empty line (where a single line is, at minimum, a line terminator).
///
/// If this returns `true`, then searching continues. If this returns
/// `false`, then searching is stopped immediately and `finish` is called.
///
/// If this returns an error, then searching is stopped immediately,
/// `finish` is not called and the error is bubbled back up to the caller
/// of the searcher.
#[inline]
fn context(
&mut self,
_searcher: &Searcher,
_context: &SinkContext,
) -> Result<bool, Self::Error> {
Ok(true)
}
/// This method is called whenever a break in contextual lines is found,
/// and is optional to implement. By default, it does nothing and returns
/// `true`.
///
/// A break can only occur when context reporting is enabled (that is,
/// either or both of `before_context` or `after_context` are greater than
/// `0`). More precisely, a break occurs between non-contiguous groups of
/// lines.
///
/// If this returns `true`, then searching continues. If this returns
/// `false`, then searching is stopped immediately and `finish` is called.
///
/// If this returns an error, then searching is stopped immediately,
/// `finish` is not called and the error is bubbled back up to the caller
/// of the searcher.
#[inline]
fn context_break(
&mut self,
_searcher: &Searcher,
) -> Result<bool, Self::Error> {
Ok(true)
}
/// This method is called when a search has begun, before any search is
/// executed. By default, this does nothing.
///
/// If this returns `true`, then searching continues. If this returns
/// `false`, then searching is stopped immediately and `finish` is called.
///
/// If this returns an error, then searching is stopped immediately,
/// `finish` is not called and the error is bubbled back up to the caller
/// of the searcher.
#[inline]
fn begin(
&mut self,
_searcher: &Searcher,
) -> Result<bool, Self::Error> {
Ok(true)
}
/// This method is called when a search has completed. By default, this
/// does nothing.
///
/// If this returns an error, the error is bubbled back up to the caller of
/// the searcher.
#[inline]
fn finish(
&mut self,
_searcher: &Searcher,
_: &SinkFinish,
) -> Result<(), Self::Error> {
Ok(())
}
}
impl<'a, S: Sink> Sink for &'a mut S {
type Error = S::Error;
#[inline]
fn matched(
&mut self,
searcher: &Searcher,
mat: &SinkMatch,
) -> Result<bool, S::Error> {
(**self).matched(searcher, mat)
}
#[inline]
fn context(
&mut self,
searcher: &Searcher,
context: &SinkContext,
) -> Result<bool, S::Error> {
(**self).context(searcher, context)
}
#[inline]
fn context_break(
&mut self,
searcher: &Searcher,
) -> Result<bool, S::Error> {
(**self).context_break(searcher)
}
#[inline]
fn begin(
&mut self,
searcher: &Searcher,
) -> Result<bool, S::Error> {
(**self).begin(searcher)
}
#[inline]
fn finish(
&mut self,
searcher: &Searcher,
sink_finish: &SinkFinish,
) -> Result<(), S::Error> {
(**self).finish(searcher, sink_finish)
}
}
/// Summary data reported at the end of a search.
///
/// This reports data such as the total number of bytes searched and the
/// absolute offset of the first occurrence of binary data, if any were found.
///
/// A searcher that stops early because of an error does not call `finish`.
/// A searcher that stops early because the `Sink` implementor instructed it
/// to will still call `finish`.
#[derive(Clone, Debug)]
pub struct SinkFinish {
pub(crate) byte_count: u64,
pub(crate) binary_byte_offset: Option<u64>,
}
impl SinkFinish {
/// Return the total number of bytes searched.
#[inline]
pub fn byte_count(&self) -> u64 {
self.byte_count
}
/// If binary detection is enabled and if binary data was found, then this
/// returns the absolute byte offset of the first detected byte of binary
/// data.
///
/// Note that since this is an absolute byte offset, it cannot be relied
/// upon to index into any addressable memory.
#[inline]
pub fn binary_byte_offset(&self) -> Option<u64> {
self.binary_byte_offset
}
}
/// A type that describes a match reported by a searcher.
#[derive(Clone, Debug)]
pub struct SinkMatch<'b> {
pub(crate) line_term: LineTerminator,
pub(crate) bytes: &'b [u8],
pub(crate) absolute_byte_offset: u64,
pub(crate) line_number: Option<u64>,
}
impl<'b> SinkMatch<'b> {
/// Returns the bytes for all matching lines, including the line
/// terminators, if they exist.
#[inline]
pub fn bytes(&self) -> &'b [u8] {
self.bytes
}
/// Return an iterator over the lines in this match.
///
/// If multi line search is enabled, then this may yield more than one
/// line (but always at least one line). If multi line search is disabled,
/// then this always reports exactly one line (but may consist of just
/// the line terminator).
///
/// Lines yielded by this iterator include their terminators.
#[inline]
pub fn lines(&self) -> LineIter<'b> {
LineIter::new(self.line_term.as_byte(), self.bytes)
}
/// Returns the absolute byte offset of the start of this match. This
/// offset is absolute in that it is relative to the very beginning of the
/// input in a search, and can never be relied upon to be a valid index
/// into an in-memory slice.
#[inline]
pub fn absolute_byte_offset(&self) -> u64 {
self.absolute_byte_offset
}
/// Returns the line number of the first line in this match, if available.
///
/// Line numbers are only available when the search builder is instructed
/// to compute them.
#[inline]
pub fn line_number(&self) -> Option<u64> {
self.line_number
}
}
/// The type of context reported by a searcher.
#[derive(Clone, Debug, Eq, PartialEq)]
pub enum SinkContextKind {
/// The line reported occurred before a match.
Before,
/// The line reported occurred after a match.
After,
/// Any other type of context reported, e.g., as a result of a searcher's
/// "passthru" mode.
Other,
}
/// A type that describes a contextual line reported by a searcher.
#[derive(Clone, Debug)]
pub struct SinkContext<'b> {
pub(crate) line_term: LineTerminator,
pub(crate) bytes: &'b [u8],
pub(crate) kind: SinkContextKind,
pub(crate) absolute_byte_offset: u64,
pub(crate) line_number: Option<u64>,
}
impl<'b> SinkContext<'b> {
/// Returns the context bytes, including line terminators.
#[inline]
pub fn bytes(&self) -> &'b [u8] {
self.bytes
}
/// Returns the type of context.
#[inline]
pub fn kind(&self) -> &SinkContextKind {
&self.kind
}
/// Return an iterator over the lines in this match.
///
/// This always yields exactly one line (and that one line may contain just
/// the line terminator).
///
/// Lines yielded by this iterator include their terminators.
#[cfg(test)]
pub(crate) fn lines(&self) -> LineIter<'b> {
LineIter::new(self.line_term.as_byte(), self.bytes)
}
/// Returns the absolute byte offset of the start of this context. This
/// offset is absolute in that it is relative to the very beginning of the
/// input in a search, and can never be relied upon to be a valid index
/// into an in-memory slice.
#[inline]
pub fn absolute_byte_offset(&self) -> u64 {
self.absolute_byte_offset
}
/// Returns the line number of the first line in this context, if
/// available.
///
/// Line numbers are only available when the search builder is instructed
/// to compute them.
#[inline]
pub fn line_number(&self) -> Option<u64> {
self.line_number
}
}
/// A collection of convenience implementations of `Sink`.
///
/// Each implementation in this module makes some kind of sacrifice in the name
/// of making common cases easier to use. Most frequently, each type is a
/// wrapper around a closure specified by the caller that provides limited
/// access to the full suite of information available to implementors of
/// `Sink`.
///
/// For example, the `UTF8` sink makes the following sacrifices:
///
/// * All matches must be UTF-8. An arbitrary `Sink` does not have this
/// restriction and can deal with arbitrary data. If this sink sees invalid
/// UTF-8, then an error is returned and searching stops. (Use the `Lossy`
/// sink instead to suppress this error.)
/// * The searcher must be configured to report line numbers. If it isn't,
/// an error is reported at the first match and searching stops.
/// * Context lines, context breaks and summary data reported at the end of
/// a search are all ignored.
/// * Implementors are forced to use `io::Error` as their error type.
///
/// If you need more flexibility, then you're advised to implement the `Sink`
/// trait directly.
pub mod sinks {
use std::io;
use std::str;
use searcher::Searcher;
use super::{Sink, SinkError, SinkMatch};
/// A sink that provides line numbers and matches as strings while ignoring
/// everything else.
///
/// This implementation will return an error if a match contains invalid
/// UTF-8 or if the searcher was not configured to count lines. Errors
/// on invalid UTF-8 can be suppressed by using the `Lossy` sink instead
/// of this one.
///
/// The closure accepts two parameters: a line number and a UTF-8 string
/// containing the matched data. The closure returns a
/// `Result<bool, io::Error>`. If the `bool` is `false`, then the search
/// stops immediately. Otherwise, searching continues.
///
/// If multi line mode was enabled, the line number refers to the line
/// number of the first line in the match.
#[derive(Clone, Debug)]
pub struct UTF8<F>(pub F)
where F: FnMut(u64, &str) -> Result<bool, io::Error>;
impl<F> Sink for UTF8<F>
where F: FnMut(u64, &str) -> Result<bool, io::Error>
{
type Error = io::Error;
fn matched(
&mut self,
_searcher: &Searcher,
mat: &SinkMatch,
) -> Result<bool, io::Error> {
let matched = match str::from_utf8(mat.bytes()) {
Ok(matched) => matched,
Err(err) => return Err(io::Error::error_message(err)),
};
let line_number = match mat.line_number() {
Some(line_number) => line_number,
None => {
let msg = "line numbers not enabled";
return Err(io::Error::error_message(msg));
}
};
(self.0)(line_number, &matched)
}
}
/// A sink that provides line numbers and matches as (lossily converted)
/// strings while ignoring everything else.
///
/// This is like `UTF8`, except that if a match contains invalid UTF-8,
/// then it will be lossily converted to valid UTF-8 by substituting
/// invalid UTF-8 with Unicode replacement characters.
///
/// This implementation will return an error on the first match if the
/// searcher was not configured to count lines.
///
/// The closure accepts two parameters: a line number and a UTF-8 string
/// containing the matched data. The closure returns a
/// `Result<bool, io::Error>`. If the `bool` is `false`, then the search
/// stops immediately. Otherwise, searching continues.
///
/// If multi line mode was enabled, the line number refers to the line
/// number of the first line in the match.
#[derive(Clone, Debug)]
pub struct Lossy<F>(pub F)
where F: FnMut(u64, &str) -> Result<bool, io::Error>;
impl<F> Sink for Lossy<F>
where F: FnMut(u64, &str) -> Result<bool, io::Error>
{
type Error = io::Error;
fn matched(
&mut self,
_searcher: &Searcher,
mat: &SinkMatch,
) -> Result<bool, io::Error> {
use std::borrow::Cow;
let matched = match str::from_utf8(mat.bytes()) {
Ok(matched) => Cow::Borrowed(matched),
// TODO: In theory, it should be possible to amortize
// allocation here, but `std` doesn't provide such an API.
// Regardless, this only happens on matches with invalid UTF-8,
// which should be pretty rare.
Err(_) => String::from_utf8_lossy(mat.bytes()),
};
let line_number = match mat.line_number() {
Some(line_number) => line_number,
None => {
let msg = "line numbers not enabled";
return Err(io::Error::error_message(msg));
}
};
(self.0)(line_number, &matched)
}
}
/// A sink that provides line numbers and matches as raw bytes while
/// ignoring everything else.
///
/// This implementation will return an error on the first match if the
/// searcher was not configured to count lines.
///
/// The closure accepts two parameters: a line number and a raw byte string
/// containing the matched data. The closure returns a `Result<bool,
/// io::Error>`. If the `bool` is `false`, then the search stops
/// immediately. Otherwise, searching continues.
///
/// If multi line mode was enabled, the line number refers to the line
/// number of the first line in the match.
#[derive(Clone, Debug)]
pub struct Bytes<F>(pub F)
where F: FnMut(u64, &[u8]) -> Result<bool, io::Error>;
impl<F> Sink for Bytes<F>
where F: FnMut(u64, &[u8]) -> Result<bool, io::Error>
{
type Error = io::Error;
fn matched(
&mut self,
_searcher: &Searcher,
mat: &SinkMatch,
) -> Result<bool, io::Error> {
let line_number = match mat.line_number() {
Some(line_number) => line_number,
None => {
let msg = "line numbers not enabled";
return Err(io::Error::error_message(msg));
}
};
(self.0)(line_number, mat.bytes())
}
}
}

View File

@ -0,0 +1,787 @@
use std::io::{self, Write};
use std::str;
use grep_matcher::{
LineMatchKind, LineTerminator, Match, Matcher, NoCaptures, NoError,
};
use memchr::memchr;
use regex::bytes::{Regex, RegexBuilder};
use searcher::{BinaryDetection, Searcher, SearcherBuilder};
use sink::{Sink, SinkContext, SinkFinish, SinkMatch};
/// A simple regex matcher.
///
/// This supports setting the matcher's line terminator configuration directly,
/// which we use for testing purposes. That is, the caller explicitly
/// determines whether the line terminator optimization is enabled. (In reality
/// this optimization is detected automatically by inspecting and possibly
/// modifying the regex itself.)
#[derive(Clone, Debug)]
pub struct RegexMatcher {
regex: Regex,
line_term: Option<LineTerminator>,
every_line_is_candidate: bool,
}
impl RegexMatcher {
/// Create a new regex matcher.
pub fn new(pattern: &str) -> RegexMatcher {
let regex = RegexBuilder::new(pattern)
.multi_line(true) // permits ^ and $ to match at \n boundaries
.build()
.unwrap();
RegexMatcher {
regex: regex,
line_term: None,
every_line_is_candidate: false,
}
}
/// Forcefully set the line terminator of this matcher.
///
/// By default, this matcher has no line terminator set.
pub fn set_line_term(
&mut self,
line_term: Option<LineTerminator>,
) -> &mut RegexMatcher {
self.line_term = line_term;
self
}
/// Whether to return every line as a candidate or not.
///
/// This forces searchers to handle the case of reporting a false positive.
pub fn every_line_is_candidate(
&mut self,
yes: bool,
) -> &mut RegexMatcher {
self.every_line_is_candidate = yes;
self
}
}
impl Matcher for RegexMatcher {
type Captures = NoCaptures;
type Error = NoError;
fn find_at(
&self,
haystack: &[u8],
at: usize,
) -> Result<Option<Match>, NoError> {
Ok(self.regex
.find_at(haystack, at)
.map(|m| Match::new(m.start(), m.end())))
}
fn new_captures(&self) -> Result<NoCaptures, NoError> {
Ok(NoCaptures::new())
}
fn line_terminator(&self) -> Option<LineTerminator> {
self.line_term
}
fn find_candidate_line(
&self,
haystack: &[u8],
) -> Result<Option<LineMatchKind>, NoError> {
if self.every_line_is_candidate {
assert!(self.line_term.is_some());
if haystack.is_empty() {
return Ok(None);
}
// Make it interesting and return the last byte in the current
// line.
let i = memchr(self.line_term.unwrap().as_byte(), haystack)
.map(|i| i)
.unwrap_or(haystack.len() - 1);
Ok(Some(LineMatchKind::Candidate(i)))
} else {
Ok(self.shortest_match(haystack)?.map(LineMatchKind::Confirmed))
}
}
}
/// An implementation of Sink that prints all available information.
///
/// This is useful for tests because it lets us easily confirm whether data
/// is being passed to Sink correctly.
#[derive(Clone, Debug)]
pub struct KitchenSink(Vec<u8>);
impl KitchenSink {
/// Create a new implementation of Sink that includes everything in the
/// kitchen.
pub fn new() -> KitchenSink {
KitchenSink(vec![])
}
/// Return the data written to this sink.
pub fn as_bytes(&self) -> &[u8] {
&self.0
}
}
impl Sink for KitchenSink {
type Error = io::Error;
fn matched(
&mut self,
_searcher: &Searcher,
mat: &SinkMatch,
) -> Result<bool, io::Error> {
assert!(!mat.bytes().is_empty());
assert!(mat.lines().count() >= 1);
let mut line_number = mat.line_number();
let mut byte_offset = mat.absolute_byte_offset();
for line in mat.lines() {
if let Some(ref mut n) = line_number {
write!(self.0, "{}:", n)?;
*n += 1;
}
write!(self.0, "{}:", byte_offset)?;
byte_offset += line.len() as u64;
self.0.write_all(line)?;
}
Ok(true)
}
fn context(
&mut self,
_searcher: &Searcher,
context: &SinkContext,
) -> Result<bool, io::Error> {
assert!(!context.bytes().is_empty());
assert!(context.lines().count() == 1);
if let Some(line_number) = context.line_number() {
write!(self.0, "{}-", line_number)?;
}
write!(self.0, "{}-", context.absolute_byte_offset)?;
self.0.write_all(context.bytes())?;
Ok(true)
}
fn context_break(
&mut self,
_searcher: &Searcher,
) -> Result<bool, io::Error> {
self.0.write_all(b"--\n")?;
Ok(true)
}
fn finish(
&mut self,
_searcher: &Searcher,
sink_finish: &SinkFinish,
) -> Result<(), io::Error> {
writeln!(self.0, "")?;
writeln!(self.0, "byte count:{}", sink_finish.byte_count())?;
if let Some(offset) = sink_finish.binary_byte_offset() {
writeln!(self.0, "binary offset:{}", offset)?;
}
Ok(())
}
}
/// A type for expressing tests on a searcher.
///
/// The searcher code has a lot of different code paths, mostly for the
/// purposes of optimizing a bunch of different use cases. The intent of the
/// searcher is to pick the best code path based on the configuration, which
/// means there is no obviously direct way to ask that a specific code path
/// be exercised. Thus, the purpose of this tester is to explicitly check as
/// many code paths that make sense.
///
/// The tester works by assuming you want to test all pertinent code paths.
/// These can be trimmed down as necessary via the various builder methods.
#[derive(Debug)]
pub struct SearcherTester {
haystack: String,
pattern: String,
filter: Option<::regex::Regex>,
print_labels: bool,
expected_no_line_number: Option<String>,
expected_with_line_number: Option<String>,
expected_slice_no_line_number: Option<String>,
expected_slice_with_line_number: Option<String>,
by_line: bool,
multi_line: bool,
invert_match: bool,
line_number: bool,
binary: BinaryDetection,
auto_heap_limit: bool,
after_context: usize,
before_context: usize,
passthru: bool,
}
impl SearcherTester {
/// Create a new tester for testing searchers.
pub fn new(haystack: &str, pattern: &str) -> SearcherTester {
SearcherTester {
haystack: haystack.to_string(),
pattern: pattern.to_string(),
filter: None,
print_labels: false,
expected_no_line_number: None,
expected_with_line_number: None,
expected_slice_no_line_number: None,
expected_slice_with_line_number: None,
by_line: true,
multi_line: true,
invert_match: false,
line_number: true,
binary: BinaryDetection::none(),
auto_heap_limit: true,
after_context: 0,
before_context: 0,
passthru: false,
}
}
/// Execute the test. If the test succeeds, then this returns successfully.
/// If the test fails, then it panics with an informative message.
pub fn test(&self) {
// Check for configuration errors.
if self.expected_no_line_number.is_none() {
panic!("an 'expected' string with NO line numbers must be given");
}
if self.line_number && self.expected_with_line_number.is_none() {
panic!("an 'expected' string with line numbers must be given, \
or disable testing with line numbers");
}
let configs = self.configs();
if configs.is_empty() {
panic!("test configuration resulted in nothing being tested");
}
if self.print_labels {
for config in &configs {
let labels = vec![
format!("reader-{}", config.label),
format!("slice-{}", config.label),
];
for label in &labels {
if self.include(label) {
println!("{}", label);
} else {
println!("{} (ignored)", label);
}
}
}
}
for config in &configs {
let label = format!("reader-{}", config.label);
if self.include(&label) {
let got = config.search_reader(&self.haystack);
assert_eq_printed!(config.expected_reader, got, "{}", label);
}
let label = format!("slice-{}", config.label);
if self.include(&label) {
let got = config.search_slice(&self.haystack);
assert_eq_printed!(config.expected_slice, got, "{}", label);
}
}
}
/// Set a regex pattern to filter the tests that are run.
///
/// By default, no filter is present. When a filter is set, only test
/// configurations with a label matching the given pattern will be run.
///
/// This is often useful when debugging tests, e.g., when you want to do
/// printf debugging and only want one particular test configuration to
/// execute.
#[allow(dead_code)]
pub fn filter(&mut self, pattern: &str) -> &mut SearcherTester {
self.filter = Some(::regex::Regex::new(pattern).unwrap());
self
}
/// When set, the labels for all test configurations are printed before
/// executing any test.
///
/// Note that in order to see these in tests that aren't failing, you'll
/// want to use `cargo test -- --nocapture`.
#[allow(dead_code)]
pub fn print_labels(&mut self, yes: bool) -> &mut SearcherTester {
self.print_labels = yes;
self
}
/// Set the expected search results, without line numbers.
pub fn expected_no_line_number(
&mut self,
exp: &str,
) -> &mut SearcherTester {
self.expected_no_line_number = Some(exp.to_string());
self
}
/// Set the expected search results, with line numbers.
pub fn expected_with_line_number(
&mut self,
exp: &str,
) -> &mut SearcherTester {
self.expected_with_line_number = Some(exp.to_string());
self
}
/// Set the expected search results, without line numbers, when performing
/// a search on a slice. When not present, `expected_no_line_number` is
/// used instead.
pub fn expected_slice_no_line_number(
&mut self,
exp: &str,
) -> &mut SearcherTester {
self.expected_slice_no_line_number = Some(exp.to_string());
self
}
/// Set the expected search results, with line numbers, when performing a
/// search on a slice. When not present, `expected_with_line_number` is
/// used instead.
#[allow(dead_code)]
pub fn expected_slice_with_line_number(
&mut self,
exp: &str,
) -> &mut SearcherTester {
self.expected_slice_with_line_number = Some(exp.to_string());
self
}
/// Whether to test search with line numbers or not.
///
/// This is enabled by default. When enabled, the string that is expected
/// when line numbers are present must be provided. Otherwise, the expected
/// string isn't required.
pub fn line_number(&mut self, yes: bool) -> &mut SearcherTester {
self.line_number = yes;
self
}
/// Whether to test search using the line-by-line searcher or not.
///
/// By default, this is enabled.
pub fn by_line(&mut self, yes: bool) -> &mut SearcherTester {
self.by_line = yes;
self
}
/// Whether to test search using the multi line searcher or not.
///
/// By default, this is enabled.
#[allow(dead_code)]
pub fn multi_line(&mut self, yes: bool) -> &mut SearcherTester {
self.multi_line = yes;
self
}
/// Whether to perform an inverted search or not.
///
/// By default, this is disabled.
pub fn invert_match(&mut self, yes: bool) -> &mut SearcherTester {
self.invert_match = yes;
self
}
/// Whether to enable binary detection on all searches.
///
/// By default, this is disabled.
pub fn binary_detection(
&mut self,
detection: BinaryDetection,
) -> &mut SearcherTester {
self.binary = detection;
self
}
/// Whether to automatically attempt to test the heap limit setting or not.
///
/// By default, one of the test configurations includes setting the heap
/// limit to its minimal value for normal operation, which checks that
/// everything works even at the extremes. However, in some cases, the heap
/// limit can (expectedly) alter the output slightly. For example, it can
/// impact the number of bytes searched when performing binary detection.
/// For convenience, it can be useful to disable the automatic heap limit
/// test.
pub fn auto_heap_limit(&mut self, yes: bool) -> &mut SearcherTester {
self.auto_heap_limit = yes;
self
}
/// Set the number of lines to include in the "after" context.
///
/// The default is `0`, which is equivalent to not printing any context.
pub fn after_context(&mut self, lines: usize) -> &mut SearcherTester {
self.after_context = lines;
self
}
/// Set the number of lines to include in the "before" context.
///
/// The default is `0`, which is equivalent to not printing any context.
pub fn before_context(&mut self, lines: usize) -> &mut SearcherTester {
self.before_context = lines;
self
}
/// Whether to enable the "passthru" feature or not.
///
/// When passthru is enabled, it effectively treats all non-matching lines
/// as contextual lines. In other words, enabling this is akin to
/// requesting an unbounded number of before and after contextual lines.
///
/// This is disabled by default.
pub fn passthru(&mut self, yes: bool) -> &mut SearcherTester {
self.passthru = yes;
self
}
/// Return the minimum size of a buffer required for a successful search.
///
/// Generally, this corresponds to the maximum length of a line (including
/// its terminator), but if context settings are enabled, then this must
/// include the sum of the longest N lines.
///
/// Note that this must account for whether the test is using multi line
/// search or not, since multi line search requires being able to fit the
/// entire haystack into memory.
fn minimal_heap_limit(&self, multi_line: bool) -> usize {
if multi_line {
1 + self.haystack.len()
} else if self.before_context == 0 && self.after_context == 0 {
1 + self.haystack.lines().map(|s| s.len()).max().unwrap_or(0)
} else {
let mut lens: Vec<usize> =
self.haystack.lines().map(|s| s.len()).collect();
lens.sort();
lens.reverse();
let context_count =
if self.passthru {
self.haystack.lines().count()
} else {
// Why do we add 2 here? Well, we need to add 1 in order to
// have room to search at least one line. We add another
// because the implementation will occasionally include
// an additional line when handling the context. There's
// no particularly good reason, other than keeping the
// implementation simple.
2 + self.before_context + self.after_context
};
// We add 1 to each line since `str::lines` doesn't include the
// line terminator.
lens.into_iter()
.take(context_count)
.map(|len| len + 1)
.sum::<usize>()
}
}
/// Returns true if and only if the given label should be included as part
/// of executing `test`.
///
/// Inclusion is determined by the filter specified. If no filter has been
/// given, then this always returns `true`.
fn include(&self, label: &str) -> bool {
let re = match self.filter {
None => return true,
Some(ref re) => re,
};
re.is_match(label)
}
/// Configs generates a set of all search configurations that should be
/// tested. The configs generated are based on the configuration in this
/// builder.
fn configs(&self) -> Vec<TesterConfig> {
let mut configs = vec![];
let matcher = RegexMatcher::new(&self.pattern);
let mut builder = SearcherBuilder::new();
builder
.line_number(false)
.invert_match(self.invert_match)
.binary_detection(self.binary.clone())
.after_context(self.after_context)
.before_context(self.before_context)
.passthru(self.passthru);
if self.by_line {
let mut matcher = matcher.clone();
let mut builder = builder.clone();
let expected_reader =
self.expected_no_line_number.as_ref().unwrap().to_string();
let expected_slice = match self.expected_slice_no_line_number {
None => expected_reader.clone(),
Some(ref e) => e.to_string(),
};
configs.push(TesterConfig {
label: "byline-noterm-nonumber".to_string(),
expected_reader: expected_reader.clone(),
expected_slice: expected_slice.clone(),
builder: builder.clone(),
matcher: matcher.clone(),
});
if self.auto_heap_limit {
builder.heap_limit(Some(self.minimal_heap_limit(false)));
configs.push(TesterConfig {
label: "byline-noterm-nonumber-heaplimit".to_string(),
expected_reader: expected_reader.clone(),
expected_slice: expected_slice.clone(),
builder: builder.clone(),
matcher: matcher.clone(),
});
builder.heap_limit(None);
}
matcher.set_line_term(Some(LineTerminator::byte(b'\n')));
configs.push(TesterConfig {
label: "byline-term-nonumber".to_string(),
expected_reader: expected_reader.clone(),
expected_slice: expected_slice.clone(),
builder: builder.clone(),
matcher: matcher.clone(),
});
matcher.every_line_is_candidate(true);
configs.push(TesterConfig {
label: "byline-term-nonumber-candidates".to_string(),
expected_reader: expected_reader.clone(),
expected_slice: expected_slice.clone(),
builder: builder.clone(),
matcher: matcher.clone(),
});
}
if self.by_line && self.line_number {
let mut matcher = matcher.clone();
let mut builder = builder.clone();
let expected_reader =
self.expected_with_line_number.as_ref().unwrap().to_string();
let expected_slice = match self.expected_slice_with_line_number {
None => expected_reader.clone(),
Some(ref e) => e.to_string(),
};
builder.line_number(true);
configs.push(TesterConfig {
label: "byline-noterm-number".to_string(),
expected_reader: expected_reader.clone(),
expected_slice: expected_slice.clone(),
builder: builder.clone(),
matcher: matcher.clone(),
});
matcher.set_line_term(Some(LineTerminator::byte(b'\n')));
configs.push(TesterConfig {
label: "byline-term-number".to_string(),
expected_reader: expected_reader.clone(),
expected_slice: expected_slice.clone(),
builder: builder.clone(),
matcher: matcher.clone(),
});
matcher.every_line_is_candidate(true);
configs.push(TesterConfig {
label: "byline-term-number-candidates".to_string(),
expected_reader: expected_reader.clone(),
expected_slice: expected_slice.clone(),
builder: builder.clone(),
matcher: matcher.clone(),
});
}
if self.multi_line {
let mut builder = builder.clone();
let expected_slice = match self.expected_slice_no_line_number {
None => {
self.expected_no_line_number.as_ref().unwrap().to_string()
}
Some(ref e) => e.to_string(),
};
builder.multi_line(true);
configs.push(TesterConfig {
label: "multiline-nonumber".to_string(),
expected_reader: expected_slice.clone(),
expected_slice: expected_slice.clone(),
builder: builder.clone(),
matcher: matcher.clone(),
});
if self.auto_heap_limit {
builder.heap_limit(Some(self.minimal_heap_limit(true)));
configs.push(TesterConfig {
label: "multiline-nonumber-heaplimit".to_string(),
expected_reader: expected_slice.clone(),
expected_slice: expected_slice.clone(),
builder: builder.clone(),
matcher: matcher.clone(),
});
builder.heap_limit(None);
}
}
if self.multi_line && self.line_number {
let mut builder = builder.clone();
let expected_slice = match self.expected_slice_with_line_number {
None => {
self.expected_with_line_number
.as_ref().unwrap().to_string()
}
Some(ref e) => e.to_string(),
};
builder.multi_line(true);
builder.line_number(true);
configs.push(TesterConfig {
label: "multiline-number".to_string(),
expected_reader: expected_slice.clone(),
expected_slice: expected_slice.clone(),
builder: builder.clone(),
matcher: matcher.clone(),
});
builder.heap_limit(Some(self.minimal_heap_limit(true)));
configs.push(TesterConfig {
label: "multiline-number-heaplimit".to_string(),
expected_reader: expected_slice.clone(),
expected_slice: expected_slice.clone(),
builder: builder.clone(),
matcher: matcher.clone(),
});
builder.heap_limit(None);
}
configs
}
}
#[derive(Debug)]
struct TesterConfig {
label: String,
expected_reader: String,
expected_slice: String,
builder: SearcherBuilder,
matcher: RegexMatcher,
}
impl TesterConfig {
/// Execute a search using a reader. This exercises the incremental search
/// strategy, where the entire contents of the corpus aren't necessarily
/// in memory at once.
fn search_reader(&self, haystack: &str) -> String {
let mut sink = KitchenSink::new();
let mut searcher = self.builder.build();
let result = searcher.search_reader(
&self.matcher,
haystack.as_bytes(),
&mut sink,
);
if let Err(err) = result {
let label = format!("reader-{}", self.label);
panic!("error running '{}': {}", label, err);
}
String::from_utf8(sink.as_bytes().to_vec()).unwrap()
}
/// Execute a search using a slice. This exercises the search routines that
/// have the entire contents of the corpus in memory at one time.
fn search_slice(&self, haystack: &str) -> String {
let mut sink = KitchenSink::new();
let mut searcher = self.builder.build();
let result = searcher.search_slice(
&self.matcher,
haystack.as_bytes(),
&mut sink,
);
if let Err(err) = result {
let label = format!("slice-{}", self.label);
panic!("error running '{}': {}", label, err);
}
String::from_utf8(sink.as_bytes().to_vec()).unwrap()
}
}
#[cfg(test)]
mod tests {
use grep_matcher::{Match, Matcher};
use super::*;
fn m(start: usize, end: usize) -> Match {
Match::new(start, end)
}
#[test]
fn empty_line1() {
let haystack = b"";
let matcher = RegexMatcher::new(r"^$");
assert_eq!(matcher.find_at(haystack, 0), Ok(Some(m(0, 0))));
}
#[test]
fn empty_line2() {
let haystack = b"\n";
let matcher = RegexMatcher::new(r"^$");
assert_eq!(matcher.find_at(haystack, 0), Ok(Some(m(0, 0))));
assert_eq!(matcher.find_at(haystack, 1), Ok(Some(m(1, 1))));
}
#[test]
fn empty_line3() {
let haystack = b"\n\n";
let matcher = RegexMatcher::new(r"^$");
assert_eq!(matcher.find_at(haystack, 0), Ok(Some(m(0, 0))));
assert_eq!(matcher.find_at(haystack, 1), Ok(Some(m(1, 1))));
assert_eq!(matcher.find_at(haystack, 2), Ok(Some(m(2, 2))));
}
#[test]
fn empty_line4() {
let haystack = b"a\n\nb\n";
let matcher = RegexMatcher::new(r"^$");
assert_eq!(matcher.find_at(haystack, 0), Ok(Some(m(2, 2))));
assert_eq!(matcher.find_at(haystack, 1), Ok(Some(m(2, 2))));
assert_eq!(matcher.find_at(haystack, 2), Ok(Some(m(2, 2))));
assert_eq!(matcher.find_at(haystack, 3), Ok(Some(m(5, 5))));
assert_eq!(matcher.find_at(haystack, 4), Ok(Some(m(5, 5))));
assert_eq!(matcher.find_at(haystack, 5), Ok(Some(m(5, 5))));
}
#[test]
fn empty_line5() {
let haystack = b"a\n\nb\nc";
let matcher = RegexMatcher::new(r"^$");
assert_eq!(matcher.find_at(haystack, 0), Ok(Some(m(2, 2))));
assert_eq!(matcher.find_at(haystack, 1), Ok(Some(m(2, 2))));
assert_eq!(matcher.find_at(haystack, 2), Ok(Some(m(2, 2))));
assert_eq!(matcher.find_at(haystack, 3), Ok(None));
assert_eq!(matcher.find_at(haystack, 4), Ok(None));
assert_eq!(matcher.find_at(haystack, 5), Ok(None));
assert_eq!(matcher.find_at(haystack, 6), Ok(None));
}
#[test]
fn empty_line6() {
let haystack = b"a\n";
let matcher = RegexMatcher::new(r"^$");
assert_eq!(matcher.find_at(haystack, 0), Ok(Some(m(2, 2))));
assert_eq!(matcher.find_at(haystack, 1), Ok(Some(m(2, 2))));
assert_eq!(matcher.find_at(haystack, 2), Ok(Some(m(2, 2))));
}
}

3
grep2/COPYING Normal file
View File

@ -0,0 +1,3 @@
This project is dual-licensed under the Unlicense and MIT licenses.
You may use this code under the terms of either license.

23
grep2/Cargo.toml Normal file
View File

@ -0,0 +1,23 @@
[package]
name = "grep2"
version = "0.2.0" #:version
authors = ["Andrew Gallant <jamslam@gmail.com>"]
description = """
Fast line oriented regex searching as a library.
"""
documentation = "http://burntsushi.net/rustdoc/grep/"
homepage = "https://github.com/BurntSushi/ripgrep"
repository = "https://github.com/BurntSushi/ripgrep"
readme = "README.md"
keywords = ["regex", "grep", "egrep", "search", "pattern"]
license = "Unlicense/MIT"
[dependencies]
grep-matcher = { version = "0.0.1", path = "../grep-matcher" }
grep-printer = { version = "0.0.1", path = "../grep-printer" }
grep-regex = { version = "0.0.1", path = "../grep-regex" }
grep-searcher = { version = "0.0.1", path = "../grep-searcher" }
[features]
avx-accel = ["grep-searcher/avx-accel"]
simd-accel = ["grep-searcher/simd-accel"]

21
grep2/LICENSE-MIT Normal file
View File

@ -0,0 +1,21 @@
The MIT License (MIT)
Copyright (c) 2015 Andrew Gallant
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

4
grep2/README.md Normal file
View File

@ -0,0 +1,4 @@
grep
----
This is a *library* that provides grep-style line-by-line regex searching (with
comparable performance to `grep` itself).

24
grep2/UNLICENSE Normal file
View File

@ -0,0 +1,24 @@
This is free and unencumbered software released into the public domain.
Anyone is free to copy, modify, publish, use, compile, sell, or
distribute this software, either in source code form or as a compiled
binary, for any purpose, commercial or non-commercial, and by any
means.
In jurisdictions that recognize copyright laws, the author or authors
of this software dedicate any and all copyright interest in the
software to the public domain. We make this dedication for the benefit
of the public at large and to the detriment of our heirs and
successors. We intend this dedication to be an overt act of
relinquishment in perpetuity of all present and future rights to this
software under copyright law.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
For more information, please refer to <http://unlicense.org/>

10
grep2/src/lib.rs Normal file
View File

@ -0,0 +1,10 @@
/*!
TODO.
*/
#![deny(missing_docs)]
pub extern crate grep_matcher as matcher;
pub extern crate grep_printer as printer;
pub extern crate grep_regex as regex;
pub extern crate grep_searcher as searcher;