mirror of
https://github.com/BurntSushi/ripgrep.git
synced 2025-08-04 22:22:06 -07:00
The top-level listing was just getting a bit too long for my taste. So put all of the code in one directory and shrink the large top-level mess to a small top-level mess. NOTE: This commit only contains renames. The subsequent commit will actually make ripgrep build again. We do it this way with the naive hope that this will make it easier for git history to track the renames. Sigh.
273 lines
7.5 KiB
Rust
273 lines
7.5 KiB
Rust
use std::ffi::OsStr;
|
|
use std::str;
|
|
|
|
use bstr::{ByteSlice, ByteVec};
|
|
|
|
/// A single state in the state machine used by `unescape`.
|
|
#[derive(Clone, Copy, Eq, PartialEq)]
|
|
enum State {
|
|
/// The state after seeing a `\`.
|
|
Escape,
|
|
/// The state after seeing a `\x`.
|
|
HexFirst,
|
|
/// The state after seeing a `\x[0-9A-Fa-f]`.
|
|
HexSecond(char),
|
|
/// Default state.
|
|
Literal,
|
|
}
|
|
|
|
/// Escapes arbitrary bytes into a human readable string.
|
|
///
|
|
/// This converts `\t`, `\r` and `\n` into their escaped forms. It also
|
|
/// converts the non-printable subset of ASCII in addition to invalid UTF-8
|
|
/// bytes to hexadecimal escape sequences. Everything else is left as is.
|
|
///
|
|
/// The dual of this routine is [`unescape`](fn.unescape.html).
|
|
///
|
|
/// # Example
|
|
///
|
|
/// This example shows how to convert a byte string that contains a `\n` and
|
|
/// invalid UTF-8 bytes into a `String`.
|
|
///
|
|
/// Pay special attention to the use of raw strings. That is, `r"\n"` is
|
|
/// equivalent to `"\\n"`.
|
|
///
|
|
/// ```
|
|
/// use grep_cli::escape;
|
|
///
|
|
/// assert_eq!(r"foo\nbar\xFFbaz", escape(b"foo\nbar\xFFbaz"));
|
|
/// ```
|
|
pub fn escape(bytes: &[u8]) -> String {
|
|
let mut escaped = String::new();
|
|
for (s, e, ch) in bytes.char_indices() {
|
|
if ch == '\u{FFFD}' {
|
|
for b in bytes[s..e].bytes() {
|
|
escape_byte(b, &mut escaped);
|
|
}
|
|
} else {
|
|
escape_char(ch, &mut escaped);
|
|
}
|
|
}
|
|
escaped
|
|
}
|
|
|
|
/// Escapes an OS string into a human readable string.
|
|
///
|
|
/// This is like [`escape`](fn.escape.html), but accepts an OS string.
|
|
pub fn escape_os(string: &OsStr) -> String {
|
|
escape(Vec::from_os_str_lossy(string).as_bytes())
|
|
}
|
|
|
|
/// Unescapes a string.
|
|
///
|
|
/// It supports a limited set of escape sequences:
|
|
///
|
|
/// * `\t`, `\r` and `\n` are mapped to their corresponding ASCII bytes.
|
|
/// * `\xZZ` hexadecimal escapes are mapped to their byte.
|
|
///
|
|
/// Everything else is left as is, including non-hexadecimal escapes like
|
|
/// `\xGG`.
|
|
///
|
|
/// This is useful when it is desirable for a command line argument to be
|
|
/// capable of specifying arbitrary bytes or otherwise make it easier to
|
|
/// specify non-printable characters.
|
|
///
|
|
/// The dual of this routine is [`escape`](fn.escape.html).
|
|
///
|
|
/// # Example
|
|
///
|
|
/// This example shows how to convert an escaped string (which is valid UTF-8)
|
|
/// into a corresponding sequence of bytes. Each escape sequence is mapped to
|
|
/// its bytes, which may include invalid UTF-8.
|
|
///
|
|
/// Pay special attention to the use of raw strings. That is, `r"\n"` is
|
|
/// equivalent to `"\\n"`.
|
|
///
|
|
/// ```
|
|
/// use grep_cli::unescape;
|
|
///
|
|
/// assert_eq!(&b"foo\nbar\xFFbaz"[..], &*unescape(r"foo\nbar\xFFbaz"));
|
|
/// ```
|
|
pub fn unescape(s: &str) -> Vec<u8> {
|
|
use self::State::*;
|
|
|
|
let mut bytes = vec![];
|
|
let mut state = Literal;
|
|
for c in s.chars() {
|
|
match state {
|
|
Escape => match c {
|
|
'\\' => {
|
|
bytes.push(b'\\');
|
|
state = Literal;
|
|
}
|
|
'n' => {
|
|
bytes.push(b'\n');
|
|
state = Literal;
|
|
}
|
|
'r' => {
|
|
bytes.push(b'\r');
|
|
state = Literal;
|
|
}
|
|
't' => {
|
|
bytes.push(b'\t');
|
|
state = Literal;
|
|
}
|
|
'x' => {
|
|
state = HexFirst;
|
|
}
|
|
c => {
|
|
bytes.extend(format!(r"\{}", c).into_bytes());
|
|
state = Literal;
|
|
}
|
|
},
|
|
HexFirst => match c {
|
|
'0'..='9' | 'A'..='F' | 'a'..='f' => {
|
|
state = HexSecond(c);
|
|
}
|
|
c => {
|
|
bytes.extend(format!(r"\x{}", c).into_bytes());
|
|
state = Literal;
|
|
}
|
|
},
|
|
HexSecond(first) => match c {
|
|
'0'..='9' | 'A'..='F' | 'a'..='f' => {
|
|
let ordinal = format!("{}{}", first, c);
|
|
let byte = u8::from_str_radix(&ordinal, 16).unwrap();
|
|
bytes.push(byte);
|
|
state = Literal;
|
|
}
|
|
c => {
|
|
let original = format!(r"\x{}{}", first, c);
|
|
bytes.extend(original.into_bytes());
|
|
state = Literal;
|
|
}
|
|
},
|
|
Literal => match c {
|
|
'\\' => {
|
|
state = Escape;
|
|
}
|
|
c => {
|
|
bytes.extend(c.to_string().as_bytes());
|
|
}
|
|
},
|
|
}
|
|
}
|
|
match state {
|
|
Escape => bytes.push(b'\\'),
|
|
HexFirst => bytes.extend(b"\\x"),
|
|
HexSecond(c) => bytes.extend(format!("\\x{}", c).into_bytes()),
|
|
Literal => {}
|
|
}
|
|
bytes
|
|
}
|
|
|
|
/// Unescapes an OS string.
|
|
///
|
|
/// This is like [`unescape`](fn.unescape.html), but accepts an OS string.
|
|
///
|
|
/// Note that this first lossily decodes the given OS string as UTF-8. That
|
|
/// is, an escaped string (the thing given) should be valid UTF-8.
|
|
pub fn unescape_os(string: &OsStr) -> Vec<u8> {
|
|
unescape(&string.to_string_lossy())
|
|
}
|
|
|
|
/// Adds the given codepoint to the given string, escaping it if necessary.
|
|
fn escape_char(cp: char, into: &mut String) {
|
|
if cp.is_ascii() {
|
|
escape_byte(cp as u8, into);
|
|
} else {
|
|
into.push(cp);
|
|
}
|
|
}
|
|
|
|
/// Adds the given byte to the given string, escaping it if necessary.
|
|
fn escape_byte(byte: u8, into: &mut String) {
|
|
match byte {
|
|
0x21..=0x5B | 0x5D..=0x7D => into.push(byte as char),
|
|
b'\n' => into.push_str(r"\n"),
|
|
b'\r' => into.push_str(r"\r"),
|
|
b'\t' => into.push_str(r"\t"),
|
|
b'\\' => into.push_str(r"\\"),
|
|
_ => into.push_str(&format!(r"\x{:02X}", byte)),
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::{escape, unescape};
|
|
|
|
fn b(bytes: &'static [u8]) -> Vec<u8> {
|
|
bytes.to_vec()
|
|
}
|
|
|
|
#[test]
|
|
fn empty() {
|
|
assert_eq!(b(b""), unescape(r""));
|
|
assert_eq!(r"", escape(b""));
|
|
}
|
|
|
|
#[test]
|
|
fn backslash() {
|
|
assert_eq!(b(b"\\"), unescape(r"\\"));
|
|
assert_eq!(r"\\", escape(b"\\"));
|
|
}
|
|
|
|
#[test]
|
|
fn nul() {
|
|
assert_eq!(b(b"\x00"), unescape(r"\x00"));
|
|
assert_eq!(r"\x00", escape(b"\x00"));
|
|
}
|
|
|
|
#[test]
|
|
fn nl() {
|
|
assert_eq!(b(b"\n"), unescape(r"\n"));
|
|
assert_eq!(r"\n", escape(b"\n"));
|
|
}
|
|
|
|
#[test]
|
|
fn tab() {
|
|
assert_eq!(b(b"\t"), unescape(r"\t"));
|
|
assert_eq!(r"\t", escape(b"\t"));
|
|
}
|
|
|
|
#[test]
|
|
fn carriage() {
|
|
assert_eq!(b(b"\r"), unescape(r"\r"));
|
|
assert_eq!(r"\r", escape(b"\r"));
|
|
}
|
|
|
|
#[test]
|
|
fn nothing_simple() {
|
|
assert_eq!(b(b"\\a"), unescape(r"\a"));
|
|
assert_eq!(b(b"\\a"), unescape(r"\\a"));
|
|
assert_eq!(r"\\a", escape(b"\\a"));
|
|
}
|
|
|
|
#[test]
|
|
fn nothing_hex0() {
|
|
assert_eq!(b(b"\\x"), unescape(r"\x"));
|
|
assert_eq!(b(b"\\x"), unescape(r"\\x"));
|
|
assert_eq!(r"\\x", escape(b"\\x"));
|
|
}
|
|
|
|
#[test]
|
|
fn nothing_hex1() {
|
|
assert_eq!(b(b"\\xz"), unescape(r"\xz"));
|
|
assert_eq!(b(b"\\xz"), unescape(r"\\xz"));
|
|
assert_eq!(r"\\xz", escape(b"\\xz"));
|
|
}
|
|
|
|
#[test]
|
|
fn nothing_hex2() {
|
|
assert_eq!(b(b"\\xzz"), unescape(r"\xzz"));
|
|
assert_eq!(b(b"\\xzz"), unescape(r"\\xzz"));
|
|
assert_eq!(r"\\xzz", escape(b"\\xzz"));
|
|
}
|
|
|
|
#[test]
|
|
fn invalid_utf8() {
|
|
assert_eq!(r"\xFF", escape(b"\xFF"));
|
|
assert_eq!(r"a\xFFb", escape(b"a\xFFb"));
|
|
}
|
|
}
|