mirror of
https://github.com/BurntSushi/ripgrep.git
synced 2025-05-19 09:40:22 -07:00
208 lines
6.2 KiB
Rust
208 lines
6.2 KiB
Rust
use std::cmp;
|
|
use std::iter;
|
|
|
|
use regex::bytes::Regex;
|
|
use syntax::{
|
|
Expr, Literals, Lit,
|
|
Repeater,
|
|
};
|
|
|
|
#[derive(Debug)]
|
|
pub struct LiteralSets {
|
|
prefixes: Literals,
|
|
suffixes: Literals,
|
|
required: Literals,
|
|
}
|
|
|
|
impl LiteralSets {
|
|
pub fn create(expr: &Expr) -> Self {
|
|
let mut required = Literals::empty();
|
|
union_required(expr, &mut required);
|
|
LiteralSets {
|
|
prefixes: expr.prefixes(),
|
|
suffixes: expr.suffixes(),
|
|
required: required,
|
|
}
|
|
}
|
|
|
|
pub fn to_regex(&self) -> Option<Regex> {
|
|
if self.prefixes.all_complete() && !self.prefixes.is_empty() {
|
|
// When this is true, the regex engine will do a literal scan.
|
|
return None;
|
|
}
|
|
|
|
// Out of inner required literals, prefixes and suffixes, which one
|
|
// is the longest? We pick the longest to do fast literal scan under
|
|
// the assumption that a longer literal will have a lower false
|
|
// positive rate.
|
|
let pre_lcp = self.prefixes.longest_common_prefix();
|
|
let pre_lcs = self.prefixes.longest_common_suffix();
|
|
let suf_lcp = self.suffixes.longest_common_prefix();
|
|
let suf_lcs = self.suffixes.longest_common_suffix();
|
|
|
|
let req_lits = self.required.literals();
|
|
let req = match req_lits.iter().max_by_key(|lit| lit.len()) {
|
|
None => &[],
|
|
Some(req) => &***req,
|
|
};
|
|
|
|
let mut lit = pre_lcp;
|
|
if pre_lcs.len() > lit.len() {
|
|
lit = pre_lcs;
|
|
}
|
|
if suf_lcp.len() > lit.len() {
|
|
lit = suf_lcp;
|
|
}
|
|
if suf_lcs.len() > lit.len() {
|
|
lit = suf_lcs;
|
|
}
|
|
if req.len() > lit.len() {
|
|
lit = req;
|
|
}
|
|
if lit.is_empty() {
|
|
None
|
|
} else {
|
|
// Literals always compile.
|
|
Some(Regex::new(&bytes_to_regex(lit)).unwrap())
|
|
}
|
|
}
|
|
}
|
|
|
|
fn union_required(expr: &Expr, lits: &mut Literals) {
|
|
use syntax::Expr::*;
|
|
match *expr {
|
|
Literal { ref chars, casei: false } => {
|
|
let s: String = chars.iter().cloned().collect();
|
|
lits.cross_add(s.as_bytes());
|
|
}
|
|
Literal { casei: true, .. } => {
|
|
lits.cut();
|
|
}
|
|
LiteralBytes { ref bytes, casei: false } => {
|
|
lits.cross_add(bytes);
|
|
}
|
|
LiteralBytes { casei: true, .. } => {
|
|
lits.cut();
|
|
}
|
|
Class(_) => {
|
|
lits.cut();
|
|
}
|
|
ClassBytes(_) => {
|
|
lits.cut();
|
|
}
|
|
Group { ref e, .. } => {
|
|
union_required(&**e, lits);
|
|
}
|
|
Repeat { r: Repeater::ZeroOrOne, .. } => lits.cut(),
|
|
Repeat { r: Repeater::ZeroOrMore, .. } => lits.cut(),
|
|
Repeat { ref e, r: Repeater::OneOrMore, .. } => {
|
|
union_required(&**e, lits);
|
|
lits.cut();
|
|
}
|
|
Repeat { ref e, r: Repeater::Range { min, max }, greedy } => {
|
|
repeat_range_literals(
|
|
&**e, min, max, greedy, lits, union_required);
|
|
}
|
|
Concat(ref es) if es.is_empty() => {}
|
|
Concat(ref es) if es.len() == 1 => union_required(&es[0], lits),
|
|
Concat(ref es) => {
|
|
for e in es {
|
|
let mut lits2 = lits.to_empty();
|
|
union_required(e, &mut lits2);
|
|
if lits2.is_empty() {
|
|
lits.cut();
|
|
continue;
|
|
}
|
|
if lits2.contains_empty() {
|
|
lits.cut();
|
|
}
|
|
// if !lits.union(lits2) {
|
|
if !lits.cross_product(&lits2) {
|
|
// If this expression couldn't yield any literal that
|
|
// could be extended, then we need to quit. Since we're
|
|
// short-circuiting, we also need to freeze every member.
|
|
lits.cut();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
Alternate(ref es) => {
|
|
alternate_literals(es, lits, union_required);
|
|
}
|
|
_ => lits.cut(),
|
|
}
|
|
}
|
|
|
|
fn repeat_range_literals<F: FnMut(&Expr, &mut Literals)>(
|
|
e: &Expr,
|
|
min: u32,
|
|
max: Option<u32>,
|
|
_greedy: bool,
|
|
lits: &mut Literals,
|
|
mut f: F,
|
|
) {
|
|
use syntax::Expr::*;
|
|
|
|
if min == 0 {
|
|
// This is a bit conservative. If `max` is set, then we could
|
|
// treat this as a finite set of alternations. For now, we
|
|
// just treat it as `e*`.
|
|
lits.cut();
|
|
} else {
|
|
let n = cmp::min(lits.limit_size(), min as usize);
|
|
let es = iter::repeat(e.clone()).take(n).collect();
|
|
f(&Concat(es), lits);
|
|
if n < min as usize {
|
|
lits.cut();
|
|
}
|
|
if max.map_or(true, |max| min < max) {
|
|
lits.cut();
|
|
}
|
|
}
|
|
}
|
|
|
|
fn alternate_literals<F: FnMut(&Expr, &mut Literals)>(
|
|
es: &[Expr],
|
|
lits: &mut Literals,
|
|
mut f: F,
|
|
) {
|
|
let mut lits2 = lits.to_empty();
|
|
for e in es {
|
|
let mut lits3 = lits.to_empty();
|
|
lits3.set_limit_size(lits.limit_size() / 5);
|
|
f(e, &mut lits3);
|
|
if lits3.is_empty() || !lits2.union(lits3) {
|
|
// If we couldn't find suffixes for *any* of the
|
|
// alternates, then the entire alternation has to be thrown
|
|
// away and any existing members must be frozen. Similarly,
|
|
// if the union couldn't complete, stop and freeze.
|
|
lits.cut();
|
|
return;
|
|
}
|
|
}
|
|
// All we do at the moment is look for prefixes and suffixes. If both
|
|
// are empty, then we report nothing. We should be able to do better than
|
|
// this, but we'll need something more expressive than just a "set of
|
|
// literals."
|
|
let lcp = lits2.longest_common_prefix();
|
|
let lcs = lits2.longest_common_suffix();
|
|
if !lcp.is_empty() {
|
|
lits.cross_add(lcp);
|
|
}
|
|
lits.cut();
|
|
if !lcs.is_empty() {
|
|
lits.add(Lit::empty());
|
|
lits.add(Lit::new(lcs.to_vec()));
|
|
}
|
|
}
|
|
|
|
/// Converts an arbitrary sequence of bytes to a literal suitable for building
|
|
/// a regular expression.
|
|
fn bytes_to_regex(bs: &[u8]) -> String {
|
|
let mut s = String::with_capacity(bs.len());
|
|
for &b in bs {
|
|
s.push_str(&format!("\\x{:02x}", b));
|
|
}
|
|
s
|
|
}
|