Tony Zorman b1b3c4c469 ~/.xmonad/xmonad.hs -> xmonad.hs
With XDG support so firmly ingrained now, it's about time we stop
hard-coding the configuration path in the docs.
2023-12-22 18:17:17 +01:00

78 lines
2.7 KiB
Haskell

{-# LANGUAGE FlexibleInstances, MultiParamTypeClasses, TupleSections #-}
-----------------------------------------------------------------------------
-- |
-- Module : XMonad.Layout.Grid
-- Description : A simple layout that attempts to put all windows in a square grid.
-- Copyright : (c) Lukas Mai
-- License : BSD-style (see LICENSE)
--
-- Maintainer : <l.mai@web.de>
-- Stability : unstable
-- Portability : unportable
--
-- A simple layout that attempts to put all windows in a square grid.
--
-----------------------------------------------------------------------------
module XMonad.Layout.Grid (
-- * Usage
-- $usage
Grid(..), arrange, defaultRatio
) where
import XMonad
import XMonad.StackSet
-- $usage
-- You can use this module with the following in your @xmonad.hs@:
--
-- > import XMonad.Layout.Grid
--
-- Then edit your @layoutHook@ by adding the Grid layout:
--
-- > myLayout = Grid ||| Full ||| etc..
-- > main = xmonad def { layoutHook = myLayout }
--
-- You can also specify an aspect ratio for Grid to strive for with the
-- GridRatio constructor. For example, if you want Grid to try to make a grid
-- four windows wide and three windows tall, you could use
--
-- > myLayout = GridRatio (4/3) ||| etc.
--
-- For more detailed instructions on editing the layoutHook see
-- <https://xmonad.org/TUTORIAL.html#customizing-xmonad the tutorial> and
-- "XMonad.Doc.Extending#Editing_the_layout_hook".
data Grid a = Grid | GridRatio Double deriving (Read, Show)
defaultRatio :: Double
defaultRatio = 16/9
instance LayoutClass Grid a where
pureLayout Grid r = pureLayout (GridRatio defaultRatio) r
pureLayout (GridRatio d) r = arrange d r . integrate
arrange :: Double -> Rectangle -> [a] -> [(a, Rectangle)]
arrange aspectRatio (Rectangle rx ry rw rh) st = zip st rectangles
where
nwins = length st
ncols = max 1 . min nwins . round . sqrt $ fromIntegral nwins * fromIntegral rw / (fromIntegral rh * aspectRatio)
mincs = max 1 $ nwins `div` ncols
extrs = nwins - ncols * mincs
chop :: Int -> Dimension -> [(Position, Dimension)]
chop n m = ((0, m - k * fromIntegral (pred n)) :) . map (, k) . drop 1 . reverse . take n . drop 1 . iterate (subtract k') $ m'
where
k :: Dimension
k = m `div` fromIntegral n
m' = fromIntegral m
k' :: Position
k' = fromIntegral k
xcoords = chop ncols rw
ycoords = chop mincs rh
ycoords' = chop (succ mincs) rh
(xbase, xext) = splitAt (ncols - extrs) xcoords
rectangles = combine ycoords xbase ++ combine ycoords' xext
where
combine ys xs = [Rectangle (rx + x) (ry + y) w h | (x, w) <- xs, (y, h) <- ys]