mirror of
https://github.com/xmonad/xmonad-contrib.git
synced 2025-05-19 11:30:22 -07:00
* X.*: fix typos * X.*: fix typos * X.*: fix typos * X.Util: fix typo --------- Co-authored-by: Daniel Cousens <dcousens@users.noreply.github.com>
209 lines
8.5 KiB
Haskell
209 lines
8.5 KiB
Haskell
-----------------------------------------------------------------------------
|
|
-- |
|
|
-- Module : XMonad.Util.Rectangle
|
|
-- Description : A module for handling pixel rectangles.
|
|
-- Copyright : (c) 2018 Yclept Nemo
|
|
-- License : BSD-style (see LICENSE)
|
|
--
|
|
-- Maintainer :
|
|
-- Stability : unstable
|
|
-- Portability : unportable
|
|
--
|
|
-- A module for handling pixel rectangles: 'Rectangle'.
|
|
--
|
|
-----------------------------------------------------------------------------
|
|
|
|
|
|
module XMonad.Util.Rectangle
|
|
( -- * Usage
|
|
-- $usage
|
|
PointRectangle (..)
|
|
, pixelsToIndices, pixelsToCoordinates
|
|
, indicesToRectangle, coordinatesToRectangle
|
|
, empty
|
|
, intersects
|
|
, supersetOf
|
|
, difference
|
|
, withBorder
|
|
, center
|
|
, toRatio
|
|
) where
|
|
|
|
import XMonad
|
|
import XMonad.Prelude (fi)
|
|
import qualified XMonad.StackSet as W
|
|
|
|
import Data.Ratio
|
|
|
|
|
|
-- $usage
|
|
-- > import XMonad.Util.Rectangle as R
|
|
-- > R.empty (Rectangle 0 0 1024 768)
|
|
|
|
|
|
-- | Rectangle as two points. What those points mean depends on the conversion
|
|
-- function.
|
|
data PointRectangle a = PointRectangle
|
|
{ point_x1::a -- ^ Point nearest to the origin.
|
|
, point_y1::a
|
|
, point_x2::a -- ^ Point furthest from the origin.
|
|
, point_y2::a
|
|
} deriving (Eq,Read,Show)
|
|
|
|
-- | There are three possible ways to convert rectangles to pixels:
|
|
--
|
|
-- * Consider integers as "gaps" between pixels; pixels range from @(N,N+1)@,
|
|
-- exclusively: @(0,1)@, @(1,2)@, and so on. This leads to interval ambiguity:
|
|
-- whether an integer endpoint contains a pixel depends on which direction the
|
|
-- interval approaches the pixel. Consider the adjacent pixels @(0,1)@ and
|
|
-- @(1,2)@ where @1@ can refer to either pixel @(0,1)@ or pixel @(1,2)@.
|
|
--
|
|
-- * Consider integers to demarcate the start of each pixel; pixels range from
|
|
-- @[N,N+1)@: @[0,1)@, @[1,2)@, and so on - or equivalently: @(N,N+1]@. This is
|
|
-- the most flexible coordinate system, and the convention used by the
|
|
-- 'Rectangle' type.
|
|
--
|
|
-- * Consider integers to demarcate the center of each pixel; pixels range from
|
|
-- @[N,N+1]@, as though each real-valued coordinate had been rounded (either
|
|
-- down or up) to the nearest integers. So each pixel, from zero, is listed as:
|
|
-- @[0,0]@, @[1,1]@, @[2,2]@, and so on. Rather than a coordinate system, this
|
|
-- considers pixels as row/column indices. While easiest to reason with,
|
|
-- indices are unable to represent zero-dimension rectangles.
|
|
--
|
|
-- Consider pixels as indices. Do not use this on empty rectangles.
|
|
pixelsToIndices :: Rectangle -> PointRectangle Integer
|
|
pixelsToIndices (Rectangle px py dx dy) =
|
|
PointRectangle (fromIntegral px)
|
|
(fromIntegral py)
|
|
(fromIntegral px + fromIntegral dx - 1)
|
|
(fromIntegral py + fromIntegral dy - 1)
|
|
|
|
-- | Consider pixels as @[N,N+1)@ coordinates. Available for empty rectangles.
|
|
pixelsToCoordinates :: Rectangle -> PointRectangle Integer
|
|
pixelsToCoordinates (Rectangle px py dx dy) =
|
|
PointRectangle (fromIntegral px)
|
|
(fromIntegral py)
|
|
(fromIntegral px + fromIntegral dx)
|
|
(fromIntegral py + fromIntegral dy)
|
|
|
|
-- | Invert 'pixelsToIndices'.
|
|
indicesToRectangle :: PointRectangle Integer -> Rectangle
|
|
indicesToRectangle (PointRectangle x1 y1 x2 y2) =
|
|
Rectangle (fromIntegral x1)
|
|
(fromIntegral y1)
|
|
(fromIntegral $ x2 - x1 + 1)
|
|
(fromIntegral $ y2 - y1 + 1)
|
|
|
|
-- | Invert 'pixelsToCoordinates'.
|
|
coordinatesToRectangle :: PointRectangle Integer -> Rectangle
|
|
coordinatesToRectangle (PointRectangle x1 y1 x2 y2) =
|
|
Rectangle (fromIntegral x1)
|
|
(fromIntegral y1)
|
|
(fromIntegral $ x2 - x1)
|
|
(fromIntegral $ y2 - y1)
|
|
|
|
-- | True if either the 'rect_width' or 'rect_height' fields are zero, i.e. the
|
|
-- rectangle has no area.
|
|
empty :: Rectangle -> Bool
|
|
empty (Rectangle _ _ _ 0) = True
|
|
empty (Rectangle _ _ 0 _) = True
|
|
empty Rectangle{} = False
|
|
|
|
-- | True if the intersection of the set of points comprising each rectangle is
|
|
-- not the empty set. Therefore any rectangle containing the initial points of
|
|
-- an empty rectangle will never intersect that rectangle - including the same
|
|
-- empty rectangle.
|
|
intersects :: Rectangle -> Rectangle -> Bool
|
|
intersects r1 r2 | empty r1 || empty r2 = False
|
|
| otherwise = r1_x1 < r2_x2
|
|
&& r1_x2 > r2_x1
|
|
&& r1_y1 < r2_y2
|
|
&& r1_y2 > r2_y1
|
|
where PointRectangle r1_x1 r1_y1 r1_x2 r1_y2 = pixelsToCoordinates r1
|
|
PointRectangle r2_x1 r2_y1 r2_x2 r2_y2 = pixelsToCoordinates r2
|
|
|
|
-- | True if the first rectangle contains at least all the points of the second
|
|
-- rectangle. Any rectangle containing the initial points of an empty rectangle
|
|
-- will be a superset of that rectangle - including the same empty rectangle.
|
|
supersetOf :: Rectangle -> Rectangle -> Bool
|
|
supersetOf r1 r2 = r1_x1 <= r2_x1
|
|
&& r1_y1 <= r2_y1
|
|
&& r1_x2 >= r2_x2
|
|
&& r1_y2 >= r2_y2
|
|
where PointRectangle r1_x1 r1_y1 r1_x2 r1_y2 = pixelsToCoordinates r1
|
|
PointRectangle r2_x1 r2_y1 r2_x2 r2_y2 = pixelsToCoordinates r2
|
|
|
|
-- | Return the smallest set of rectangles resulting from removing all the
|
|
-- points of the second rectangle from those of the first, i.e. @r1 - r2@, such
|
|
-- that @0 <= l <= 4@ where @l@ is the length of the resulting list.
|
|
difference :: Rectangle -> Rectangle -> [Rectangle]
|
|
difference r1 r2 | r1 `intersects` r2 = map coordinatesToRectangle $
|
|
concat [rt,rr,rb,rl]
|
|
| otherwise = [r1]
|
|
where PointRectangle r1_x1 r1_y1 r1_x2 r1_y2 = pixelsToCoordinates r1
|
|
PointRectangle r2_x1 r2_y1 r2_x2 r2_y2 = pixelsToCoordinates r2
|
|
-- top - assuming (0,0) is top-left
|
|
rt = [PointRectangle (max r2_x1 r1_x1) r1_y1 r1_x2 r2_y1 | r2_y1 > r1_y1 && r2_y1 < r1_y2]
|
|
-- right
|
|
rr = [PointRectangle r2_x2 (max r2_y1 r1_y1) r1_x2 r1_y2 | r2_x2 > r1_x1 && r2_x2 < r1_x2]
|
|
-- bottom
|
|
rb = [PointRectangle r1_x1 r2_y2 (min r2_x2 r1_x2) r1_y2 | r2_y2 > r1_y1 && r2_y2 < r1_y2]
|
|
-- left
|
|
rl = [PointRectangle r1_x1 r1_y1 r2_x1 (min r2_y2 r1_y2) | r2_x1 > r1_x1 && r2_x1 < r1_x2]
|
|
|
|
-- | Fit a 'Rectangle' within the given borders of itself. Given insufficient
|
|
-- space, borders are minimized while preserving the ratio of opposite borders.
|
|
-- Origin is top-left, and yes, negative borders are allowed.
|
|
withBorder :: Integer -- ^ Top border.
|
|
-> Integer -- ^ Bottom border.
|
|
-> Integer -- ^ Right border.
|
|
-> Integer -- ^ Left border.
|
|
-> Integer -- ^ Smallest allowable rectangle dimensions, i.e.
|
|
-- width/height, with values @<0@ defaulting to @0@.
|
|
-> Rectangle -> Rectangle
|
|
withBorder t b r l i (Rectangle x y w h) =
|
|
let -- conversions
|
|
w' = fromIntegral w
|
|
h' = fromIntegral h
|
|
-- minimum window dimensions
|
|
i' = max i 0
|
|
iw = min i' w'
|
|
ih = min i' h'
|
|
-- maximum border dimensions
|
|
bh = w' - iw
|
|
bv = h' - ih
|
|
-- scaled border ratios
|
|
rh = if l + r <= 0
|
|
then 1
|
|
else min 1 $ bh % (l + r)
|
|
rv = if t + b <= 0
|
|
then 1
|
|
else min 1 $ bv % (t + b)
|
|
-- scaled border pixels
|
|
t' = truncate $ rv * fromIntegral t
|
|
b' = truncate $ rv * fromIntegral b
|
|
r' = truncate $ rh * fromIntegral r
|
|
l' = truncate $ rh * fromIntegral l
|
|
in Rectangle (x + l')
|
|
(y + t')
|
|
(w - r' - fromIntegral l')
|
|
(h - b' - fromIntegral t')
|
|
|
|
-- | Calculate the center - @(x,y)@ - as if the 'Rectangle' were bounded.
|
|
center :: Rectangle -> (Ratio Integer,Ratio Integer)
|
|
center (Rectangle x y w h) = (cx,cy)
|
|
where cx = fromIntegral x + fromIntegral w % 2
|
|
cy = fromIntegral y + fromIntegral h % 2
|
|
|
|
-- | Invert 'scaleRationalRect'. Since that operation is lossy a roundtrip
|
|
-- conversion may not result in the original value. The first 'Rectangle' is
|
|
-- scaled to the second:
|
|
--
|
|
-- >>> (Rectangle 2 2 6 6) `toRatio` (Rectangle 0 0 10 10)
|
|
-- RationalRect (1 % 5) (1 % 5) (3 % 5) (3 % 5)
|
|
toRatio :: Rectangle -> Rectangle -> W.RationalRect
|
|
toRatio (Rectangle x1 y1 w1 h1) (Rectangle x2 y2 w2 h2) =
|
|
W.RationalRect ((fi x1 - fi x2) / fi w2)
|
|
((fi y1 - fi y2) / fi h2)
|
|
(fi w1 / fi w2) (fi h1 / fi h2)
|