mirror of
https://github.com/xmonad/xmonad-contrib.git
synced 2025-05-19 03:20:21 -07:00
76 lines
2.7 KiB
Haskell
76 lines
2.7 KiB
Haskell
-----------------------------------------------------------------------------
|
|
-- |
|
|
-- Module : XMonadContrib.ThreeColumns
|
|
-- Copyright : (c) Kai Grossjohann <kai@emptydomain.de>
|
|
-- License : BSD3-style (see LICENSE)
|
|
--
|
|
-- Maintainer : ?
|
|
-- Stability : unstable
|
|
-- Portability : unportable
|
|
--
|
|
-- A layout similar to tall but with three columns.
|
|
--
|
|
-----------------------------------------------------------------------------
|
|
|
|
module XMonadContrib.ThreeColumns (
|
|
-- * Usage
|
|
-- $usage
|
|
threeCol
|
|
) where
|
|
|
|
import XMonad
|
|
import qualified StackSet as W
|
|
import Operations ( Resize(..), IncMasterN(..), splitVertically, splitHorizontallyBy )
|
|
|
|
import Data.Ratio
|
|
|
|
--import Control.Monad.State
|
|
import Control.Monad.Reader
|
|
|
|
import Graphics.X11.Xlib
|
|
|
|
-- $usage
|
|
--
|
|
-- You can use this module with the following in your Config.hs file:
|
|
--
|
|
-- > import XMonadContrib.ThreeColumns
|
|
--
|
|
-- and add, to the list of layouts:
|
|
--
|
|
-- > threeCol nmaster delta ratio
|
|
|
|
-- %import XMonadContrib.ThreeColumns
|
|
-- %layout , threeCol nmaster delta ratio
|
|
|
|
threeCol :: Int -> Rational -> Rational -> Layout a
|
|
threeCol nmaster delta frac =
|
|
Layout { doLayout = \r -> return . (\x->(x,Nothing)) .
|
|
ap zip (tile3 frac r nmaster . length) . W.integrate
|
|
, modifyLayout = \m -> return $ msum [fmap resize (fromMessage m)
|
|
,fmap incmastern (fromMessage m)] }
|
|
|
|
where resize Shrink = threeCol nmaster delta (max 0 $ frac-delta)
|
|
resize Expand = threeCol nmaster delta (min 1 $ frac+delta)
|
|
incmastern (IncMasterN d) = threeCol (max 0 (nmaster+d)) delta frac
|
|
|
|
-- | tile3. Compute window positions using 3 panes
|
|
tile3 :: Rational -> Rectangle -> Int -> Int -> [Rectangle]
|
|
tile3 f r nmaster n
|
|
| n <= nmaster || nmaster == 0 = splitVertically n r
|
|
| n <= nmaster+1 = splitVertically nmaster s1 ++ splitVertically (n-nmaster) s2
|
|
| otherwise = splitVertically nmaster r1 ++ splitVertically nmid r2 ++ splitVertically nright r3
|
|
where (r1, r2, r3) = split3HorizontallyBy f r
|
|
(s1, s2) = splitHorizontallyBy f r
|
|
nslave = (n - nmaster)
|
|
nmid = ceiling (nslave % 2)
|
|
nright = (n - nmaster - nmid)
|
|
|
|
split3HorizontallyBy :: Rational -> Rectangle -> (Rectangle, Rectangle, Rectangle)
|
|
split3HorizontallyBy f (Rectangle sx sy sw sh) =
|
|
( Rectangle sx sy leftw sh
|
|
, Rectangle (sx + fromIntegral leftw) sy midw sh
|
|
, Rectangle (sx + fromIntegral leftw + fromIntegral midw) sy rightw sh )
|
|
where leftw = ceiling $ fromIntegral sw * (2/3) * f
|
|
midw = ceiling ( (sw - leftw) % 2 )
|
|
rightw = sw - leftw - midw
|